IREPALASER INSTITUT CARNOT MICA

Vaibhav Nain^{*1}, Muriel Carin², Thierry Engel³, Didier Boisselier¹, Christophe Cordier³

¹ IREPA LASER, Parc d'Innovation, 67400 Illkirch, France
 ² Univ. Bretagne Sud, UMR CNRS 6027, IRDL, F-56100 Lorient, France
 ³ Institut National des Sciences Appliquées, 67000 Strasbourg, France

Numerical Modeling of Wire Directed Energy Deposition Additive Manufacturing (Wire-DED) Process

North America, 7-8 Oct 2020

Directed Energy Deposition (DED)

Wire-DED: Process Principle

DED System

Co-axial nozzle with focused laser and a wire-feeder, both intersecting at a common focal point generally in an inert environment

Process Physics

- The energy density generated at a particular point leads to the melt pool formation and incoming wire is fed in the melt-pool leading to the formation of a bead
- Wire-DED Advantages
 - Fabrication of larger parts as compared to Powder-DED
 - Almost no material wastage as compared to Powder-DED

BEAM SHAPING PRINCIPLE

- ring-shaped laser beam profile
- Opening of the beam profile
- Coaxial feeding of the filler wire
- Closing the beam profile
- Focussing to a closer laser spot

Figure 1: Beam Shaping Principle © Fraunhofer Institute for Laser Technology ILT

Wire nozzle distance-Process Principle

- Annular beam
- Wire nozzle

2

- Wire Stick-out
- Melt-Pool 4
 - Workpiece Surface

Figure 2: Wire-DED Process Principle

Why model Wire-DED process?

Distortion & Residual Stresses

DED Process

- Due to the complex thermal cycles in Wire-DED process, it leads to the generation & accumulation of unwanted levels of *distortion* & residual stresses
- DED Disadvantages
 - Unwanted levels of distortion & residual stresses
 - Leads to crack formations, misalignment & failure of parts
- DED Process still not understood due to
 - It involves complex multiple heat cycles
 - Lack of understanding of accumulation of distortion & residual stress
 - Complicated evolution of microstructure of build materials
- Modeling can help to
 - Develop the better understanding of process physics
 - Predict & minimize deformation & residual stresses
 - Achieve the objective FABRICATE PART FIRST TIME RIGHT

Figure 3: Wire-DED fabricated part & Distortion accumulation can lead to rejection of part

(a) Crack

(b) Mismatch

Figure 4: DED fabricated part failure due to crack generation & misalignment during & after deposition

Numerical Model

Development of the model for Wire-DED

Use of COMSOL Multiphysics[®] 5.5

Numerical Model Development

NUMERICAL MODEL

Equivalent Numerical Heat Source $Q(x, y, z) = \frac{6\sqrt{3}AP}{abc\pi\sqrt{\pi}}exp\left(-\left(\frac{3(x - V * t)^2}{a^2} + \frac{3(y)^2}{b^2} + \frac{3(z)^2}{c^2}\right)\right)$

Numerical Material Addition/Deposition

- Quiet/Active Element Activation
- Quiet Elements: Weak Thermal Properties
- Active Elements: Temperature dependent Thermal properties (Metal)
- Activation Criterion:

$$exp\left(-\left(\frac{3(x)^2}{a^2} + \frac{3(y)^2}{b^2} + \frac{3(z)^2}{c^2}\right)\right) \ge 5\%$$

Heat Equation

$$\rho(T)C_p^*(T)\frac{\partial T}{\partial t} + \nabla q = 0$$
, where $q = -k^*(T)\nabla T$

Heat Losses

$$Q_{loss} = -h_{FC}(T_s - T_a) - \varepsilon \sigma (T_s^4 - T_a^4)$$

Figure 5: Intensity Distribution Goldak Double Ellipsoid Source

Figure 6: Schematic of Quiet/Active Element Activation method

Experiment (at IREPA LASER)

Experiment Set-Up

- Process Parameters
- Deposition Pattern
- Temperature Location & Measurement
- Melt-Pool Analysis

Figure 9: Fabricated part after the deposition process

Figure 8: Zig-Zag Deposition Pattern

Process Parameter	Value
Feedstock Type	
Substrate & Feedstock Material	Stainless Steel 316L
Mass feed rate	1.5 m/min
Dimensions	
Substrate	100×50×3 mm ³
Deposited Layer	60×3×1 mm ³
Number of Layers	10
Laser Parameters	
Laser Power	2300 Watt
Laser Scan Speed	1000 mm/min
Laser Spot Radius	2.2 mm

 Table 1: Process parameters

Experiment (at IREPA LASER)

Experiment Set-Up

- Process Parameters
- Deposition Pattern
- Thermocouple Location & Measurement
- Melt-pool analysis

Figure 12: NIT camera installed co-axially with deposition nozzle from the side

Figure 11: Infra-Red Camera (NIT)

- NIT Tachyon 16K Infra-Red Camera
- 2000 frames per second
- 128 🗙 128 acquisition mode

Melt-pool analysis is done during the process continuously as infra-red camera is installed co-axially with the deposition nozzle

Bottom face of substrate

- Type K thermocouple Omega GG-Ki-SLE-15M (250µm)
- Data Acquisition Controller: National Instruments 9184
- Data Acquisition Module : National Instruments 9213
- Data Acquisition Frequency:200 Hz

Numerical Model Set-Up

Model Definition

- CAD Design
- Material Properties
- Mesh Strategy

Figure 13: CAD design done in Comsol Design Module

(a) Original Mesh

(b) Single Refinement

(c) Double Refinement

Figure 15: Original Mesh & Mesh Refinement along the width of track

IREPA LASER a

M. Biegler, B. Graf, and M. Rethmeier, "In-situ distortions in LMD additive manufacturing walls can be measured with digital image correlation and predicted using [1] numerical simulations," Additive Manufacturing, vol. 20, pp. 101–110, Mar. 2018, doi: 10.1016/j.addma.2017.12.007.

(a) Thermal Properties [1]

(a) Mechanical Properties [1]

Figure 14: Temperature dependent Material Properties [1]

Numerical Model Set-Up

Numerical Model Calibration

- Heat Source Parameters
- Convection coefficient
- Emissivity

Figure 17: Build part & Melt-pool dimensions visualisation with Macrography analysis on cross-section

Figure 16: Melt-pool length & depth analysis

Figure 5: Intensity Distribution Goldak Double Ellipsoid Source

Process Parameter	Symbol	Value		
Heat Source Parameters				
Energy Efficiency	A	0.45		
Front Ellipsoid length	a _f	1.5 <i>mm</i>		
Rear Ellipsoid Length	a _r	4.5 mm		
Ellipsoid Width	b	1.5 mm		
Ellipsoid Depth	с	1.7 <i>mm</i>		
Weighing fraction for front ellipsoid	f _f	0.5		
Weighing fraction for rear ellipsoid	f _r	1.5		
Forced Convection Heat Loss				
Heat transfer coefficient	h _{FC}	35 W/m² K		
Natural Convection Heat Loss				
Heat transfer coefficient	h_N	5 W/m² K		
Radiation Heat Loss				
Emissivity coefficient	8	0.6		

Table 2: Final parameters after calibration

128

Numerical Model Implementation

Model features

- Material Addition
- Heat Transfer Analysis
- Mesh Analysis

COMSOL modules used

- Design Module
- Heat Transfer in solids
 - Heat Source
 - Heat flux (convective heat flux)
 - Surface-to-ambient radiation
- Structural Mechanics
 - Linear Elastic Material

Activation

Activation Criteria COMSOL:

$$exp\left(-\left(\frac{3(x-traj_{x}(t))^{2}}{a^{2}}+\frac{3(y-traj_{y}(t))^{2}}{b^{2}}+\frac{3(z-traj_{z}(t))^{2}}{c^{2}}\right)\right)$$

Numerical Model Implementation

Model features

- Material Addition
- Heat Transfer Analysis
- Mesh Analysis

COMSOL modules used

- Design Module
- Heat Transfer in solids
 - Heat Source
 - Heat flux (convective heat flux)
 - Surface-to-ambient radiation
- Structural Mechanics
 - Linear Elastic Material

Activation

Figure 19: Heat Transfer Analysis during Wire-DED process

Numerical Model Implementati

Model features

- Material Addition
- Heat Transfer Analysis
- Mesh Analysis

Mesh Type	No. of elements	Dof (solved for)	Computation time
Original Mesh	9896	63200	33 min
Single Refinement	11872	74800	1 hour 3 min
Double Refinement	13848	86400	1 hour 21 min

(c) Double refinement

Figure 20: Effect of Mesh Refinement on Accuracy of Heat Transfer phenomenon (Layer 1 deposition)

Numerical Model Implementation

Model features

- Material Addition
- Heat Transfer Analysis

Figure 22: Temperature evolution at TC 1 with different mesh refinement IREPA LASER | 14

Figure 21: Effect of Mesh Refinement on Accuracy of Heat Transfer phenomenon (deposition process is finished and build part is cooling down)

IREPA LASER INSTITUT CARNOT MICA

Numerical Model Validation

Temperature Results

- Process Simulation
- Comparison b/w experimental & numerical results

Figure 23: Comparison b/w Experimental & Numerical results

Numerical model shows good agreement with experimentally measured trends of temperature evolution during the process

Animation 1: Wire-DED Thermal Model process simulation

Future Work

Thermal Model

Validation of Thermal Model for other material

- Ti-6Al-4V
- Inconel 718
- Inconel 625

Mechanical Model

- Development of Mechanical Model
 - Identification of Material properties
 - Identification of Material Hardening Law
 - Validation of Mechanical Model with experiment results

Thankyou

Contact: vn@irepa-laser.com