

#### 3D Inspection Of AM Components Using CT:

# From Defect Detection To Thermal Simulation In COMSOL Multiphysics®

### K. Genc<sup>1</sup>, C. Butler<sup>2</sup>, B. Nye<sup>3</sup>, B. L. Toralles<sup>3</sup>, N. Turner<sup>3</sup>, N. Brierley<sup>3</sup>, P. Young<sup>4</sup>

<sup>1</sup>Synopsys, Inc., Mountain View, CA, USA
<sup>2</sup>Synopsys NE Ltd, Exeter, UK
<sup>3</sup>Manufacturing Technology Centre, Coventry, UK
<sup>4</sup>University of Exeter, Exeter, UK

COMSOL Conference 2020

#### Simpleware Product Group

- Developers of high-end 3D image processing software
- Dedicated sales, support and service teams
- Global presence
- Working with customers in clinical, life sciences, materials, manufacturing and more...





#### Simpleware Software Solutions

### GUI-based high-end 3D image processing platform which provides comprehensive range of tools for:

- Visualization including animations
- Filtering and segmentation
- Measurement, quantification and statistics
- CAD and image integration
- 3D print, CAD and FEA/CFD model export
- Scripting and automation



#### **Synopsys**®

#### How to inspect complex AM parts?

*"What are the differences between my design and the part that is actually produced by AM?"* 

"How will these differences affect real world performance?"

#### These questions can be answered using 3D image-based modelling & simulation



#### What is image-based modelling & Simulation?





AM part

Nikon MCT225 metrology X-ray CT



Radiographs



Image slices

#### What is 3D image-based modelling?



SYNOPSYS®

#### What is 3D image-based simulation?



#### The "Hot Box"

- Test jig designed to test performance of topologies before being integrated into bespoke heat exchangers.
- Design includes:
  - 1. Five sections of lattice structure which air flows through separated by six fins
  - 2. Liquid coolant flows through cross corrugated channels within the six fins
- Designed and manufactured by Hieta Technologies Ltd (UK)
- Manufactured in AlSi10Mg



#### The "Hot Box" Design



#### Scanned and reconstructed

- Hot box scanned and reconstructed using Nikon MCT225 metrology X-ray CT System at the Manufacturing Technology Centre (UK)
- Scan parameters shown below
- Reconstructed into a stack of images

| Component  | Al Hotbox   |
|------------|-------------|
| System     | XT H 225 ST |
| Voltage    | 192 kV      |
| Current    | 85 µA       |
| Filtration | 1 mm Al     |
| Voxel Size | 67 µm       |
| Scan Time  | 3540 s      |



#### Image based model in Simpleware ScanIP

- Stack of image imported into Simpleware ScanIP
- Volume rendering (grey) used for initial inspection showing powder build up in the base of the Hot Box.
- Automated Segmentation tools used to generate the initial Image-based model (blue)





#### Segmentation

- To generate an accurate Image-based model a series of automated segmentation tools were used.
  - OTSU (blue)
  - Local surface correction (yellow)
  - Light smoothing
- The local surface correction filter is used to overcome problems caused by image artifacts such as:
  - Beam hardening
  - Streaking
  - Ring artifacts





Top: section of greyscale image data, Bottom: section of greyscale image data overlaid with OTSU (fully automatic) segmentation (blue), and OTSU + local surface correction (yellow).

#### Image-based Finite Element Meshing



#### Thermal simulation in COMSOL

- Subsection of full design chosen
- Centre lattice and two fins containing cross corrugated channels
- 3 Phases modelled:
  - Metal (yellow)
  - Air (red)
  - Fluid (grey)
- Full volumetric mesh exported from Simpleware ScanIP to COMSOL Multiphysics
- Simulation of thermal behavior, coupled heat transfer and laminar flow.



#### Thermal simulation results

- Thermal simulation of "Asbuilt" image shows less uniform heat dissipation.
- "As-built" part performs worse than the "as-designed" due to geometrical deviations (blocked channels, imperfect lattice)
- This means the "as-built" part is not as efficient at heat dissipation compared to the initial design.



Left: Heat map from thermal simulation of "As-designed" part (from CAD part) Right: Heat map from thermal simulation of "As-built" part (image-based simulation)

#### Conclusion

- This workflow demonstrates how to use X-ray CT and image-based modelling and simulation as a non destructive test method to:
  - find defects in the manufactured part
  - determine the impact on real world performance
- This allows better allocation of time and physical test resources



**Project partners** 

### Innovate UK: 3in1 X-ray CT Inspection



Synopsys Confidential Information



## **Thank You**

simpleware@synopsys.com