Precision and Bias in Field Methods for Measuring Soil Saturated Hydraulic Conductivity

Nicholas P. Tecca, John S. Gulliver, John L. Nieber

UNIVERSITY OF MINNESOTA Driven to Discover

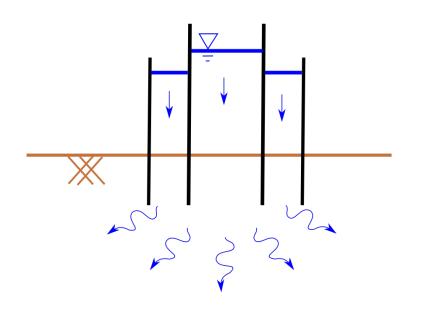
Minnesota Supercomputing Institute

DEPARTMENT OF TRANSPORTATION

Variability in the Field

Study	Loc.	Method	
Gupta et al. (2006)	Exp.F.	GP	×
Gupta et al. (2006)	Exp.F.	DRI	
Asleson et al. (2009)	UMD	MPD	×
Asleson et al. (2009)	TL	MPD	
Asleson et al. (2009)	RW1	MPD	—————×
Asleson et al. (2009)	CG	MPD	——————————————————————————————————————
Asleson et al. (2009)	UMSP	MPD	×
Asleson et al. (2009)	RW5	MPD	——————————————————————————————————————
Asleson et al. (2009)	RW4	MPD	X
Asleson et al. (2009)	BRNSVL	MPD	×
Press (2019)	SMPG	Saturo	——————————————————————————————————————
Press (2019)	SMPD	Saturo	——————————————————————————————————————
Press (2019)	SMPC	Saturo	X
Press (2019)	SMPA	Saturo	——————————————————————————————————————
Press (2019)	DSRG	Saturo	— × —
Press (2019)	USRG	Saturo	——————————————————————————————————————
Press (2019)	FRGI	MPD	
Press (2019)	BTI	SR	X
Tecca et al. (2020)	WS	TT	——————————————————————————————————————
Tecca et al. (2020)	WS	DRI	X
Tecca et al. (2020)	WS	MPD	×
		10	0 ⁻³ 10 ⁰ 10 ³
			Measured Range (cm/hr)

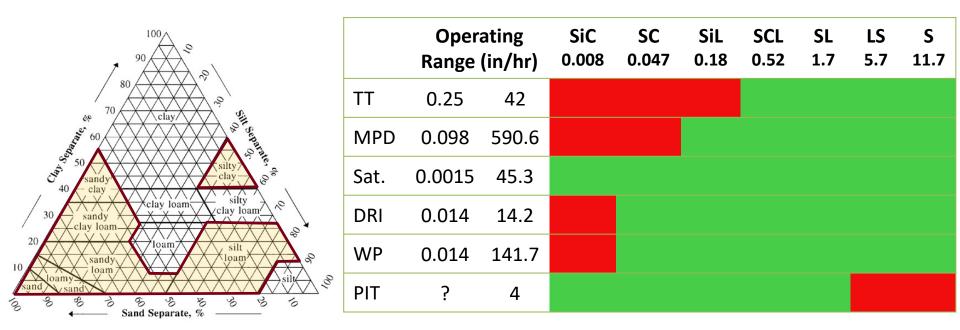
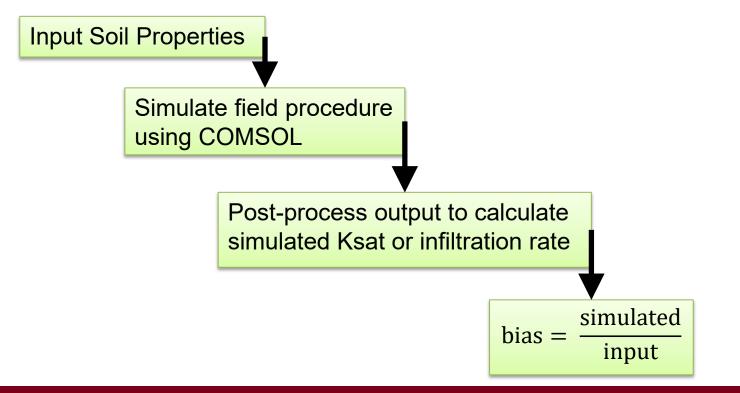
Objective

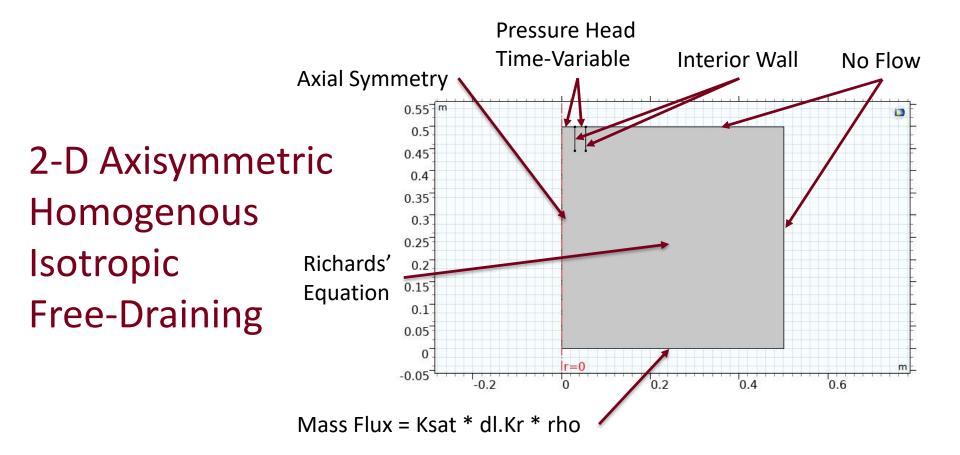

- Numerically estimate the accuracy (precision and bias) of infiltration measurement methods
 - 6 methods
 - 7 soil types
 - 5 antecedent soil moistures
 - Full factorial design
 - 210 simulations

	Flow Cor	dition	Dimensionality	
Field Methods	Constant	Falling	1-D	3-D
Turf-Tec		Х	Х	
MPD		Х		Х
Saturo	Х			Х
Double Ring	Х		Х	
Well Permeameter	Х			Х
Pilot Infiltration Test	Х		Х	

Turf-Tec Infiltrometer

Simulated Soils


Image Credits: USDA NRCS Soil Texture Calculator

Workflow

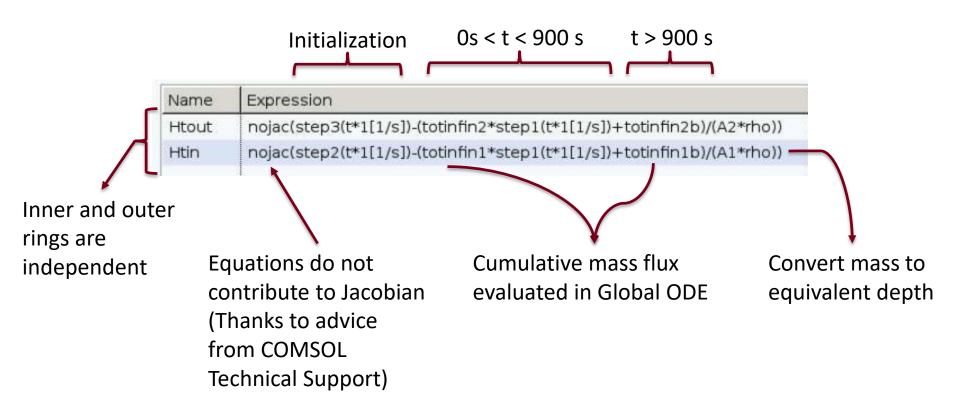
modified form of

van Genuchten retention model

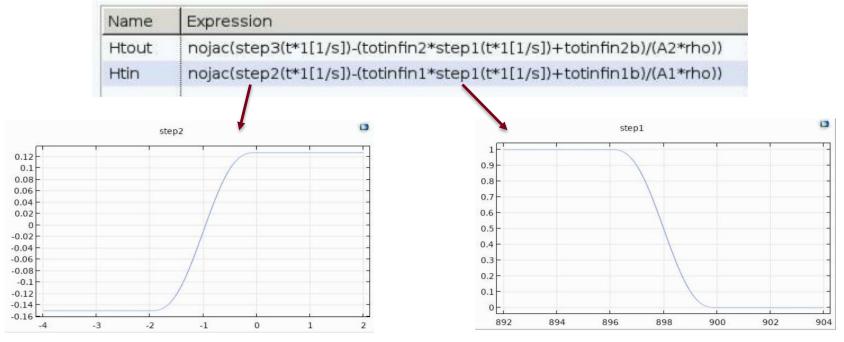
Advances in Water Resources 24 (2001) 133-144

www.elsevier.com/locate/advwatres

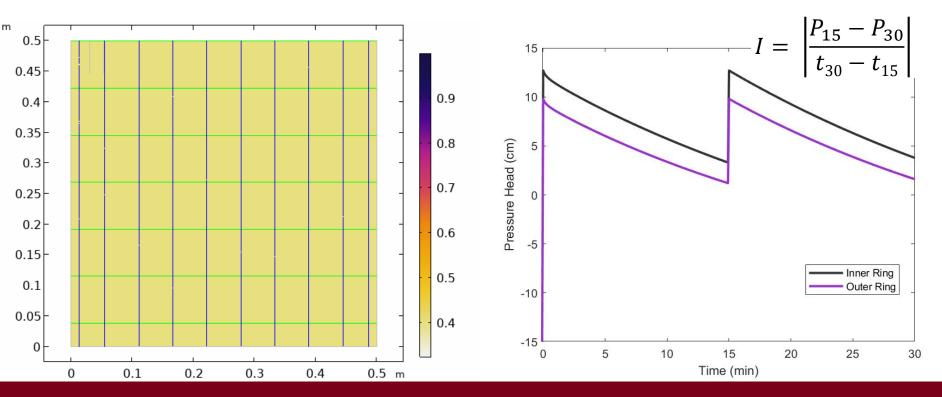
Advances in Water Resources


Effect of the shape of the soil hydraulic functions near saturation on variably-saturated flow predictions

T. Vogel^a, M. Th. van Genuchten^{b,*}, M. Cislerova^c

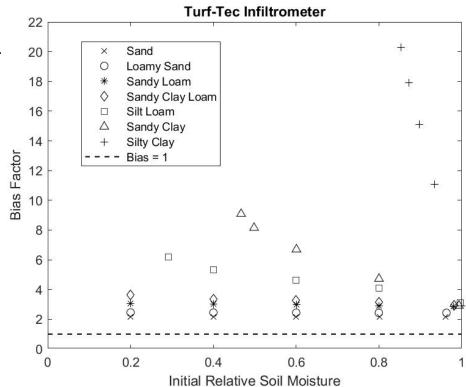

^a Department of Hydraulics and Hydrology, Czech Technical University, Thakurova 7, Prague 16629, Czech Republic ^b George E, Brown, Jr., Salinity Laboratory, USDA, ARS, 450 West Bg Springs Road, Ruersidic CA, USA ^c Department of Irrigation, Drainage and Landscape Engineering. Czech Technical University, Thakurova 7, Prague 16629, Czech Received 8 May 1998; received in revised form 10 June 2000; accepted 24 June 2000

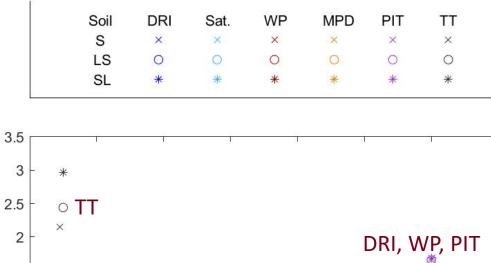
Retention Model			
Retention model:			
User defined			
Unsaturated condition:			
un dl.Hp <hs< td=""></hs<>			
Liquid volume fraction:			
θ if(dl.un,thetar+(thetam-thetar)/((1+abs(VGalpha*dl.Hp)^VGn)^VGm),thetas)			
Effective saturation:			
S _e if(dl.un,(dl.theta-thetar)/(thetam-thetar),1)			
Specific moisture capacity:			
C _m if(dl.un,d(dl.theta,p)*rho*dl.g,0)			
Relative permeability:			
kr [if(dl.un,dl.Se^0.5*((1-FSe)/(1-F1))^2,1)			

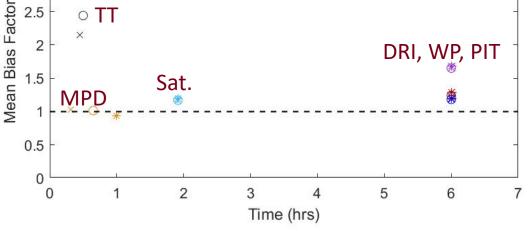


Initial filling of rings at t = 0 sec

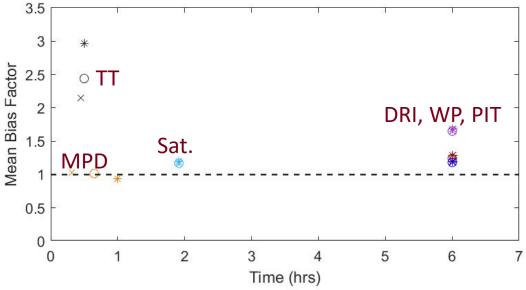
Refilling rings at t = 900 sec


Loamy Sand at 40% Initial Relative Soil Moisture


$Bias \ Factor = \frac{Simulated \ Infiltration \ Rate}{Input \ K_{sat}}$ Likely sources of bias:


- For methods like TT that assume 1-D flow, lateral divergence violates assumption
- For methods that assume 3-D flow, flow approximations may not reflect actual flow pattern

Coarse Soils Typical of Infiltrating Green **Stormwater** Infrastructure



Soil DRI Sat. WP MPD PIT TT S X X × X X × LS 0 0 0 SL * * * *

