Simulation of basal body deformation in *Tetrahymena thermophila*

Louis Woodhams¹ Yenan Shen¹ Adam Soh² Anthony Junker² Chad Pearson² Philip V Bayly¹

Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, USA
Cell and Developmental Biology, University of Colorado Anschutz, Aurora, CO, USA

Washington University in St. Louis

What are cilia?

• Cilia are slender whip-like cellular appendages that move fluid and propel cells

Clearing mucus in our airways

Human nasal epithelial cells (Bottier et al. 2017)

Propelling cells in fluid

Uniciliated *Chlamydomonas reinhardtii* Slowed 30x (Bottier et al. 2019)

The *axoneme* is an active cytoskeleton that gives cilia structure and motion

- 9 outer microtubule doublets in a cylindrical array
- Central pair of singlet microtubules
- Circumferential (nexin) links
- Radial spokes
- Dynein motor proteins
- The basal body anchors the cilium
- The basal body comprises 9 microtubule triplets

inline with the doublets of the cilium

Cilia are anchored at the base by Basal Bodies (BB)

- AC linkers (AC) and a cartwheel structure (not shown) connect BB triplets near the base
- Post-Ciliary MicroTubules (pcMT), Transverse MicroTubules (tMT), and the Striated Fiber (SF) attach the BBs to the cellular cortex and other BBs.

Basal bodies are not well understood

- How do BBs resist the forces of ciliary beating?
- What role do internal and external protein structures play in carrying BB loads? (e.g. AC links, Striated Fiber)
- How do mutations in proteins affect the structure and function of the BB?
- Can we gain insight into the generation of ciliary beating through analyzing deformation in BBs?

BB deformation studied by cryo-electron tomography

- Cells are frozen, sectioned, and imaged using electron tomography
- Curvature is measured along the BB triplets
- Displacements are measured at the BB proximal ends

7

Comsol Model

- Microtubules and accessory structures are modeled as Euler-Bernoulli beams
- Elastic couplings between adjacent doublets are modeled using *extrusion* couplings
- Internal dynein forces generating ciliary beating are modeled as follower forces and moments using *edge loads*
- Fluid forces are applied using resistive force theory and beam normal and tangent vectors

Multiple levels of complexity

- The model was initially built as a simplified model in 2D for rapid iteration and evaluation of unknown parameters
- Once the 2D model was well understood and parameters were estimated, the 3D model with greater complexity was built

Solving the system

- This system has large deformations and significant geometric nonlinearity due to the follower loads
- Stationary solutions are obtained by stepping the load using an *auxiliary sweep* with continuation
- Time-dependent solutions were obtained using the BDF solver using either simple ramped-loads, or spatiotemporally varying loading representing different theories of ciliary beating

10

Results

- Deformations obtained using simulation are qualitatively similar to those observed in cilia by cryo-ET
- Quantitatively, measurements of triplet curvature and longitudinal displacement are brought in-line with observed values by trial and selection of physically plausible parameters

Conclusions

- Inverse modeling of BB deformations provides a powerful tool for understanding these nanoscale structures
- We can evaluate the effect of varying system parameters on BB deformation to better understand the function of individual structures in the BB
- This is still a work in progress as we improve our ability to model boundary conditions and interactions between structures

Thanks!

Funding NSF CMMI-1633971

ST. LOUIS CHILDREN'S HOSPITAL WASHINGTON UNIVERSITY SCHOOL OF MEDICINE

