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Introduction

▪ Thermal ablation allows for bulk removal of tissue by inducing coagulative necrosis

▪ Acoustic ablation can be used to target tissue selectively while being minimally invasive

▪ Veryst used COMSOL Multiphysics to simulate a device which heats tissue through the propagation of 

acoustic waves

▪ Piezoelectric transducers used to generate acoustic waves

▪ Pressure losses in tissue created an acoustic heat source 

▪ Coupled finite element model included

▪ Piezoelectric Effect 

▪ Pressure Acoustics (Frequency Domain)

▪ Laminar Flow

▪ Bioheat Transfer
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Device Geometry

▪ Simulated ablation device consisted of

▪ Rigid stainless-steel shaft

▪ Array of annular PZT transducers

▪ Transducers were held to shaft with an acoustic 

insulating epoxy

▪ Device was encased in a polycarbonate bag with 

cooling fluid

▪ Model was created using a 2D axisymmetric 

geometry to reduce complexity
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a) 3D geometry of 

ablation device

b) 2D geometry of 

ablation device, 

surrounding tissue 

(yellow), and blood (red)



Material Properties

Parameter Symbol Value Reference

Tissue Density 𝜌 1.050 g/cm3 [8]

Tissue Specific Heat Capacity 𝑐𝑝𝑡 3540 J/kg/K [9]

Tissue Thermal Conductivity 𝑘𝑡 0.469 W/m/K [9]

Blood Perfusion Rate 𝜔𝑏 6.4e-3 1/s [10]

Blood Specific Heat Capacity 𝑐𝑝𝑏 3594 J/kg/K [11]

Water Acoustic Absorption Coefficient 𝛼𝑤 3590.694 1/m at 5.27 MHz [7]

Tissue Acoustic Absorption Coefficient 𝛼𝑡 54.5 1/m at 5.27 MHz [7]
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Pressure Acoustics (Frequency Domain)

▪ Eigenfrequency study identified 5.27 MHz as 

the optimal transducer frequency

▪ Mode shape that would produce pressure 

waves in the radial direction

▪ PML was used to resolve waves not 

completely attenuated by tissue and blood

▪ Lossy elastic behavior of tissue acted as a 

heat source in this study

▪ Attenuation in tissue was used as a heat 

source in subsequent heat transfer studies
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a) Acoustic pressure 

near transducer array
b) Absolute acoustic 

pressure in device, 

tissue, and blood



Laminar Flow

▪ Modeled aqueous cooling fluid flowing around 

ablation device

▪ Fluid at a temperature of 25°C

▪ Conjugate heat transfer was considered (non-

isothermal flow)

▪ Circulation of the fluid was through the center of the 

hollow central shaft supporting piezoelectric 

transducers

▪ If flow pattern of the coolant fluid is not 

axisymmetric, a 3D CFD simulation would be 

required

▪ In some cases, we can ignore the CFD simulation 

completely, and assume a suitable heat transfer 

coefficient at the boundaries involving the coolant 

fluid

COMSOL Conference 

2020 North America
6

Fluid velocity and streamlines in a cross 

section of the ablation device



Bioheat Transfer

▪ Pennes Bioheat Transfer Model was used with an 

acoustic heat source considering blood perfusion:

𝜌𝑐𝑝𝑡
𝜕𝑇′

𝜕𝑡
= 𝛻 𝑘𝑡𝛻𝑇

′ − 𝜔𝑏𝑐𝑝𝑏𝑇
′ + 𝑄𝑎𝑐

▪ The acoustic heat source was determined from the heat 

generated by the attenuation of acoustic wave

▪ Due to lossy elastic behavior of tissue

▪ Transient heat transfer model over a 10-minute period

▪ 6 minutes active heating

▪ 4 minutes with transducers switched off
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Temperature distribution in 

ablation device, tissue, and 

blood (a) at initial state before 

the start of ablation (b) after 5 

minutes of heating

Maximum temperature in 

the tissue over the 

ablation period



Transient Heat Transfer
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Temperature distribution in 

ablation device, tissue, and blood 

for a 10-minute treatment



Resulting Damage

▪ Fraction of damaged tissue from Arrhenius kinetics 

damage integral was evaluated after 10 minutes (6 

minutes of heating and 4 minutes with the with 

transducers switched off) in:

a) original model with uniform power distribution 

along transducer array

b) model with transducer power maximized in 

central transducers of the array

c) model with cooling fluid at a temperature of 

10°C 

d) model with transducer power maximized in 

upper and lower regions of the transducer array

▪ Arrhenius damage model considered typical 

necrosis values for liver tissue [9]
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Conclusions

▪ Acoustic tissue ablation devices can be modeled easily and accurately with simulation tools such as 

COMSOL Multiphysics 

▪ Important factors to consider in designing ablation devices:

▪ Temperature

▪ Shape of ablation zone

▪ Changing the power distribution in the array of piezoelectric transducers can produce targeted ablation 

zones

▪ Computational models allow for the rapid iteration of various geometries and parameters and reduce 

the need for in vivo experimental studies

▪ Simulation tools can provide a great starting point for the design of complex medical devices
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