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BENTONITE CLAY BUFFER IN SUBSURFACE 
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SUBSURFACE TRANSPORT
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MICROBIOLOGICALLY INFLUENCED 
CORROSION (MIC)
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WHY USE COMSOL?

DGR performance is governed by highly coupled multiphysics.

We are using COMSOL to answer these key questions:

• How long will it take to fully saturate the bentonite?

• How do various parameters affect DGR performance?

• What is the distribution of bisulphide flux over the UFC?
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MODEL DEVELOPMENT
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Conceptual Model



MODEL DEVELOPMENT
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Assumptions 



MODEL DEVELOPMENT

Richards’ Equation:

𝐶𝑚 + 𝑆𝑒𝑆
𝜕𝐻𝑝

𝜕𝑡
+ 𝛻 ∙ −𝐾𝛻 𝐻𝑝 + 𝑧 = 0
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MODEL DEVELOPMENT

Heat Transfer:

𝜌𝑐𝑝
𝜕𝑇

𝜕𝑡
= 𝛻 𝑘 ∙ 𝛻𝑇 + 𝑞 𝑡

9

Subsurface Flow Module 

Spent fuel Copper Bentonite buffer Host rock



MODEL DEVELOPMENT

Transport of Diluted Species (TDS):
𝜕𝐶

𝜕𝑡
= 𝐷𝛻2𝐶
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MODEL DEVELOPMENT
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MODEL DEVELOPMENT
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MODEL DEVELOPMENT
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MODEL DEVELOPMENT
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SENSITIVITY ANALYSIS
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RESULTS
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CONCLUSIONS

• A coupled thermal-saturation-transport model was developed to aid 
in the performance assessment of the Canadian DGR.

• The model was able to simulate aqueous transport in variably 
saturated and non-isothermal conditions. 

• Various sensitivity analysis were performed using the model, 
including domain depth which showed that this was an important 
parameter to consider to obtain accurate temperature profiles.

• Higher bisulphide flux occurred at the hemi-spherical UFC end caps 
due to UFC geometry and saturation profile.
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THANK YOU!
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