Transport of Corrosive Species through Highly Compacted Bentonite Clay: Model Development and Sensitivity Study

Md Abdullah Asad*, Sarah Couillard^{1,} Ian L. Molnar², Mehran Behazin⁺ and Peter G. Keech⁺, and Magdalena M. Krol*

*York University, Canada

¹Queen's University, Canada

² University of Edinburgh, UK

⁺Nuclear Waste Management Organization, Canada

creative	passionate	rational	confident	ingenious

BENTONITE CLAY BUFFER IN SUBSURFACE

Innovative Water Technologies for Environmental Research

SCHOOL OF ENGINEERING

SUBSURFACE TRANSPORT

MICROBIOLOGICALLY INFLUENCED CORROSION (MIC)

WHY USE COMSOL?

DGR performance is governed by highly coupled multiphysics. We are using COMSOL to answer these key questions:

- How long will it take to fully saturate the bentonite?
- How do various parameters affect DGR performance?
- What is the distribution of bisulphide flux over the UFC?

Conceptual Model

UNIVERSITÉ

UNIVERSIT

Assumptions

YOR k

UNIVERSITÉ

UNIVERSITY

Subsurface Flow Module

Subsurface Flow Module

Subsurface Flow Module

Domain & Mesh

YORK

UNIVERSITÉ

UNIVERSITY

Innovative Water Technologies for Environmental Research

Richards' Eq.

SENSITIVITY ANALYSIS

Average Saturation

CONCLUSIONS

- A coupled thermal-saturation-transport model was developed to aid in the performance assessment of the Canadian DGR.
- The model was able to simulate aqueous transport in variably saturated and non-isothermal conditions.
- Various sensitivity analysis were performed using the model, including domain depth which showed that this was an important parameter to consider to obtain accurate temperature profiles.
- Higher bisulphide flux occurred at the hemi-spherical UFC end caps due to UFC geometry and saturation profile.

THANK YOU!

nwmo

NUCLEAR WASTE MANAGEMENT ORGANIZATION SOCIÉTÉ DE GESTION DES DÉCHETS NUCLÉAIRES

Innovative Water Technologies for Environmental Research

iW****TE?