Modelling of cavity hydrogen pressure for a cast steel

Une école de l'IMT

Yaktiti Ahmed^{1,2,*}, Christien Frédéric¹, Carton Jean — François² 1 Mines Saint-Etienne, Univ Lyon, CNRS, UMR 5307 LGF, Centre SMS, Département MPI, F-42023 Saint-Etienne, France. 2 SafeMetal, 1 Boulevard de la Boissonnette, 42110 Feurs, France. *e-mail : ahmed.yaktiti@emse.fr

L'esprit industriel

Introduction

Hydrogen is a harmful element for steels because it can easily embrittle them. This phenomenon is known as Hydrogen Embrittlement (H.E).

The hydrogen pressure theory is a H.E. mechanism in which atomic hydrogen H diffuses through the material and recombines to molecular hydrogen H2 inside the cavities. As a result, the internal pressure rises until reaching equilibrium. Consequently, the pressure can attain hundreds of MPa in some cases and it generates a stress field around the cavity, which can lead to rupture.

Figure 1. Fracture surface of a steel shown a particular feature related to H.E known as "fish-eyes".

Computational methods

The internal pressure cannot be measured

Simulation

experimentally, thus, in order to estimate it a finite element model was elaborated using COMSOL Multiphysics[®].

Defining flux at cavity-metal interface

- $J = -CM \frac{\partial \mu}{\partial x} \equiv J = -CM' \Delta \mu$
- $2H \leftrightarrow H_2 \implies \frac{1}{2}(\mu_{\mathrm{H}_2}^0 + RT \ln f) = \mu_{\underline{\mathrm{H}}}^0 + RT \ln c_{\mathrm{L}},$
- $J = -C \times Q \times ln \frac{S \times \sqrt{f}}{C}$ C : hydrogen concentration • Q : constant • S: hydrogen solubility
 - f : fugacity

The setup consists of a rectangular metal sample that contains 3 cavities with different dimensions. Initially, hydrogen is located only in the matrix and no flux was applied on the box boundaries.

Results

Pressure

The model is able to predict the equilibrium pressure inside a cavity and permits to follow the time-dependence of hydrogen pressure during diffusion.

Mass balance

The following graph shows the evolution \hat{I}

The pressure

The present model uses mainly two physics interfaces :

- The transport of diluted species
 - Boundary ODEs and DAEs

of hydrogen quantities between the matrix and cavities. The mass is conserved at every time step.

Conclusions -

• A numerical model that predicts hydrogen pressure inside a cavity was created.

 $\times 10^{-1}$

- The time dependence of hydrogen pressure during diffusion permits to have a better understanding of the problem.
- Results show that the maximum pressure can be reached before equilibrium.