Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Updated Results of Singlet Oxygen Modeling Incorporating Local Vascular Diffusion for PDT - new

R. Penjweini[1], M. M. Kim[1], T. C. Zhu[1]
[1]Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA

Introduction: Singlet oxygen (¹O₂) has a critical role in the cell-killing mechanism of photodynamic therapy (PDT). Therefore, in this study, the distance-dependent reacted ¹O₂ is numerically calculated using finite-element method (FEM). Herein, we use a model [Ref. 1] that has been previously developed to incorporate the diffusion equation for the light transport in tissue and the macroscopic ...

Evaluation of Internal Resistance and Power Loss in Micro Thermoelectric Generators (µTEGs)

S. Seif[1], K. Cadien[1]
[1]Department of Chemical & Materials Engineering, University of Alberta, Edmonton, AB, Canada

One of the major challenges in designing µTEGs is to minimize power loss due to internal resistance (r) of Thermoelectric (TE) materials. To solve this problem we have performed simulation analysis and calculated the internal resistance of eight different TE materials. The internal resistances of these TE materials were then compared to the power generated across the copper electrode as seen in ...

Optimal Design for the Grating Coupler of Surface Plasmons

Y. Huang

Mathematics Department, University of California, Los Angeles, CA, USA

We present an optimization procedure to optimize the maximum coupling of free space optical wave to surface plasmon. Shape derivative from shape sensitivity analysis is calculated, and the corresponding partial derivatives of the objective functional with respect to finite number of design variables are derived. An optimal design of the gratings to couple maximum amount of free space photon ...

A Study of Laser Doppler Anemometer Using COMSOL Multiphysics®

I. Lancranjan[1] and C. Gavrila[2]
[1]Advanced Study Centre, National Institute for Aerospace Research “Elie Carafoli”, Bucharest, Romania
[2]Technical University of Civil Engineering Bucharest, Bucharest, Romania

Laser anemometers based on application of Doppler Effect have been developed and are used in-flight, on aircrafts for measurement of air flow parameters, mainly its speed versus the airplane. The air speed measurements are vital for safe flights. The main basic idea of Doppler techniques consists in measuring the frequency of scattered light. In this paper, we propose a study of a laser Doppler ...

Void Shape Evolution of Silicon: Level-Set Approach - new

C. Grau Turuelo[1], C. Breitkopf[1]
[1]Technische Universität Dresden, Dresden, Germany

The void shape evolution of silicon is a process driven mainly by surface diffusion which leads to a geometrical transformation of trenches etched in silicon wafers due to surface energy minimization. The temperature, the ambient gas and the annealing time affect the velocity of the process. The use of custom PDEs in COMSOL Multiphysics® software and the Level-Set method provide a good base ...

Simulating the Response of Planar Photonic Structures Under the Strain of Surface Acoustic Waves

O. D. D. Couto Jr. [1], A. C. T. Covacevice [1],
[1] Instituto de Física Gleb Wataghin, Universidade Estadual de Campinas, Campinas, SP, Brazil

In this contribution, we simulate the optical response of piezoelectric planar optical microcavities (POMCs) under the modulation introduced by a propagating surface acoustic wave (SAW). The physical picture of the model is shown in Figure 1. A metallic interdigital transducer (IDT) is placed on the sample surface and, via inverse piezoelectric effect, is responsible for the generation of SAWs ...

3D Modeling of Plasmon Excitation by Grating

G.G. Gentili[1], S. Pietralunga[2], M. Bolzoni[1]
[1]Politecnico di Milano, Dipartimento di Elettronica e Informazione, Milano, Italy
[2]INFN-CNR, Istituto di Fotonica e Nanotecnologie, Milano, Italy

Grating-assisted optical coupling into long-range modes of strip plasmonic waveguides is analyzed by a 3D numerical simulation with COMSOL Multiphysics. We used the RF Module and its scattering formulation. A comparison with results obtained using the common 2D approximated analysis is shown for the case of 1D grating coupler and input Gaussian beam. Excited diffracted modal field distribution ...

A Study of Distributed Feed-Back Fiber Laser Sensor for Aeronautical Applications Using COMSOL Multiphysics

I. Lancranjan[1], C. Gavrila[2], S. Miclos[3], and D. Savastru[3]
[1]Advanced Study Centre - National Institute for Aerospace Research Elie Carafoli, Bucharest, Romania
[2]Technical University of Civil Engineering Bucharest, Romania
[3]National Institute R&D of Optoelectronics, INOE 2000, Bucharest, Romania

Distributed Feedback Fiber Laser (DFB-FL) sensors are increasingly used in aeronautical applications. One of the newest such applications consists in detecting the “transition” zone between laminar and turbulent air flow upon the extrados surface of an aircraft wing. In this specific application DFB-FL are operated as air pressure sensors monitoring amplitude variations of ~1 Pa (laminar flow) ...

Near-fields in Arrays of Triangular Particles: Coupling Effects and Field Enhancements

M. Goncalves[1], T. Makaryan[2], G. Papageorgiou[3], U. Herr[3], and O. Marti[1]
[1]Ulm University - Inst. of Experimental Physics, Ulm, Germany
[2]Yerevan State University, Yerevan, Armenia
[3]Ulm University - Institute of Micro and Nanomaterials, Ulm, Germany

Surface enhanced Raman scattering (SERS) investigations of silver and gold triangular nanoparticles reveal strong field enhancements at the corners of the particles. Though the measurements were done at wavelengths far from the surface-plasmon resonance of the particles, large field enhancements can be generated by near-field coupling between the triangular particles and smaller metal ...

Silicon Nanopillar Array for Light Emission Enhancement in Color-converting LED

P. Ding (丁佩) [1],
[1] Department of Mathematics and Physics, Zhengzhou Institute of Aeronautical Industry Management, Zhengzhou, Henan, China

Plasmonic metallic nanostructures have been demonstrated an effective way to enhance the light emission efficiency in LEDs. Here, we propose a design of white LEDs that combining dielectric silicon nanopillar array in the color-converting layer. By investigating theoretically the guided mode caused by the nanopillar array-waveguide system, we demonstrate that the silicon nanopillar arrays enable ...