Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Silicon Nanopillar Array for Light Emission Enhancement in Color-converting LED

P. Ding (丁佩) [1],
[1] Department of Mathematics and Physics, Zhengzhou Institute of Aeronautical Industry Management, Zhengzhou, Henan, China

Plasmonic metallic nanostructures have been demonstrated an effective way to enhance the light emission efficiency in LEDs. Here, we propose a design of white LEDs that combining dielectric silicon nanopillar array in the color-converting layer. By investigating theoretically the guided mode caused by the nanopillar array-waveguide system, we demonstrate that the silicon nanopillar arrays enable ...

Thickness Designs for Micro-Thermoelectric Generators Using Three Dimensional PDE Coefficient-COMSOL Multiphysics 4.2a Analysis

S. Seif[1], K. Cadien[1]
[1]Department of Chemical & Materials Engineering, University of Alberta, Edmonton, AB, Canada

Predicting the optimum thickness and gap size between n-type and p-type legs of micro thermoelectric devices are the major challenges in designing micro thermo electric generators. We have reported the gap size and optimal thickness for optimal output power. We found that the gap size should be 0.1 microns; but, depending on fabrication capability, the gap size can be varied from 0.1 to 6 ...

AlGaInAs/InP Hexagonal Resonator Microlasers with a Center Hole

H. Weng [1], Y. Yang [1], B. Liu [1], X. Ma [1]
[1] Institute of Semiconductors, Chinese Academy of Science, Beijing, China

In the past decades, equilateral polygonal microcavity lasers with whispering-gallery modes (WGMs) have attracted great attentions due to their potential application in photonic-integrated circuits. Compared to the perfect microdisk without deformation, the polygonal microcavities such as triangle, square, hexagonal and octagonal can easily realize the light directional emission and single mode ...

Periodic Near-field Enhancement on Metal-Dielectric Interfacial Gratings at Optimized Azimuthal Orientation

M. Csete[1,2], X. Hu[1], A. Sipos[2], A. Szalai[2], A. Mathesz[2], and K. Berggren[1]

[1]Research Laboratory of Electronics, Nanostructures Laboratory, Massachusetts Institute of Technology, Massachusetts, USA
[2]Department of Optics and Quantum Electronics, University of Szeged, Szeged, Hungary

The effect of plasmon-wavelength scaled gratings on the surface plasmon resonance is studied experimentally and theoretically. The model samples are multi-layers containing laser fabricated gratings at bimetal-polymer interfaces. Dual-angle dependent surface plasmon resonance measurements are performed illuminating the samples by monochromatic light in Kretschmann arrangement. The double ...

Optimized Illumination Directions of Single-Photon Detectors Integrated with Different Plasmonic Structures

M. Csete[1], Á. Sipos[1], A. Szalai[1], G. Szabó[1]
[1]Department of Optics and Quantum Electronics, University of Szeged, Szeged, Hungary

The optimal orientations of different single-photon detector designs were determined by COMSOL software package. Absorption of niobium-nitride (NbN) stripes in two different (p=220 nm, 3p=660 nm) periodic patterns integrated with plasmonic elements was studied. In OC-SNSPDs consisting of ~quarter-photon-wavelength nano-cavity the optimum direction is perpendicular incidence onto NbN stripes in P ...

Optimization of 3D Layered Metal-Dielectric Stacks (MDS) for Near-Field Fluorescence Imaging

P.S. Tan[1], K. Elsayad[2], K. Heinze[1]
[1]Rudolf Virchow Center, University of Würzburg, Würzburg, Germany
[2]Research Institute of Molecular Pathology (IMP), Vienna, Austria

Nano-structures consisting of layered metal-dielectric stacks (MDSs) can be designed to have evanescent transmission and reflection coefficients that oscillate as a function of transverse wavevector and frequency. However, these structures always suffer from the material losses and surface roughness that are detrimental to image reconstruction. As such, we propose an optimized planar anisotropic ...

Theoretical Simulations of Silicon-On-Nothing (SON) Structures

C. Grau Turuelo[1], B. Bergmann[1], C. Breitkopf[1], F. Hoffmann[2], L. Brencher[2]
[1]Technische Universität Dresden, Dresden, Saxony, Germany
[2]Infineon Technologies GmbH, Dresden, Dresden, Saxony, Germany

A novel technique for semiconductor manufacturing is introduced: Silicon-On-Nothing. This process consists of an initial cylindrical trench which has a shape evolution under certain conditions: high temperature (1100 °C), low pressure (10 Torr) and a non-oxidizing atmosphere such as hydrogen. These conditions enable a, mainly, surface diffusion phenomenon whose final result is an empty space ...

Finite Element Analysis of Integrated Circuit Interconnect Lines on Lossy Silicon Substrate

S. Musa[1], M. Sadiku[1], and A. Emam[2]

[1]Roy G. Perry College of Engineering, Prairie View A&M University, Prairie View, TX
[2]Information Systems Department, King Saud University, Riyadh, Saudi Arabia

The silicon substrate has a significant effect on the inductance parameter of a lossy interconnect line on an integrated circuit. It is essential to take this into account in determining the transmission line electrical parameters. In this paper, a new quasi-TEM capacitance and inductance analysis of multiconductor multilayer interconnects is successfully demonstrated using the finite element ...

Time-Resolved Optical Tomography in Preclinical Studies: Propagation of Excitation and Fluorescence Photons.

F. Nouizi[1], R. Chabrier[1], M. Torregrossa[2], and P. Poulet[1]
[1]Laboratoire d’Imagerie et de Neurosciences Cognitives, Straßbourg, France
[2]Laboratoire des Sciences de l'Image, de l'Informatique et de la Télédétection, France

We present time-resolved methods that rely on near-infrared photons to image the optical properties and distribution of fluorescent probes in small laboratory animals. The coupled diffusion equations of excitation and fluorescence photons in highly scattering tissues were solved using the three-dimensional Finite Element Method (FEM) provided by COMSOL. The computed results allowed to yield ...

Optimization of Micro-Structured Waveguides in Lithium Niobate (Z-Cut) - new

H. Karakuzu[1], M. Dubov[1], S. Boscolo[1]
[1] Aston University, Birmingham, UK

We present an optimization procedure to improve the propagation properties of the depressed-cladding, buried micro-structured waveguides formed in a z-cut lithium niobate (LN) crystal by high repetition rate femtosecond (fs) laser writing. It is shown that the propagation wavelength for which the confinement losses of ordinary (O) and extraordinary ordinary (E) polarizations are below 1 dB/cm ...