Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Simulating an Adaptive, Liquid-Filled Membrane Lens with COMSOL Multiphysics® Software

V. S. Negi[1], H. Garg[1], B. Singh [2],
[1] Central Scientific Instruments Organisation, Chandigarh, India
[2] Chandigarh College of Engineering and Technology, Chandigarh, India

Adaptive optics control using liquid filled membrane lens is based on the principle of deflection of polymeric membrane. Controlled deflection in membrane leads to controlled focal length. This enhances the focus tuning ability of the system at the same time make optical system compact and economical. The adjustment of fluid pressure helps to toggle between different field of view at the same ...

A Reliable Approach to Estimate Surface-enhanced Raman Scattering Intensity of Metal Nanostructures

En-Ming You [1], Jun Yi [1], Song-Yuan Ding [1,2],
[1] State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
[2] Collaborative Innovation Center of Chemistry for Energy Materials, Xiamen University, Xiamen, China

Surface-enhanced Raman scattering (SERS) is a fingerprint spectroscopy whose sensitivity is down to single molecule level. The mechanism of SERS is mainly contributed to huge enhancement of local electric field, which originated from surface plasmon resonance of metal nanostructures. It is very important to exactly calculate the local enhancement in the electric field strength for right ...

Modeling of a Nonlinear Hybrid Plasmonic Waveguide for Enhanced Surface Plasmon Polaritons Through Optical Parametric Amplification

D. Wang[1], T. Li[1], S. Wang[1], S. Zhu[1]
[1]Nanjing University, Nanjing, Jiangsu, China

Surface Plasmon Polaritions (SPPs), as electromagnetic waves localized at the surface of a metal, enjoy the unique properties to confine energy into sub-wavelength scale, which is beneficial for future photonic integration. However, the severe absorption caused by the metal influences the propagation distance greatly. Actually, SPPs loss can be compensated by optical parametric amplification in ...

Dielectric Adaptive Optical Gels

R. Eisenschmid [1],
[1] OPTIMA pharma GmbH, Schwäbisch Hall, Germany

Adaptive Optics is common sense, since many people use digital cameras with electromechanical iris actors on elastic autofocus lenses. This project tries to create a COMSOL Multiphysics based mathematical model of adaptive optics with electrostatically induced deformation of dielectric gels. Upper and lower sides of a lens (dielectric conductive gel) are coated by transparent conductive films, i ...


吴强 [1], 潘崇佩 [1], 张琦 [1],
[1] 南开大学,天津,中国

“极化激元”是固体物理学中的重要概念,泛指各种极性元激发与光子的耦合。其中,声子极化激元是指晶格振动的声子与电磁场中的光子相互耦合的一种极化激元波。使用飞秒光在铁电晶体铌酸锂中通过光学非线性效应可产生声子极化激元,其频率位于太赫兹波段,在晶格的振动弛豫、太赫兹光谱、与介观微结构作用等领域已有广泛应用。 声子极化激元涉及电磁场和晶格场的耦合问题,其形式满足黄昆方程。我们使用 COMSOL Multiphysics® 的多物理场(偏微分方程组以及射频模块)模拟了块状铌酸锂晶体中产生声子极化激元波的产生和传输。 铌酸锂晶体作为太赫兹应用的集成化平台,可通过在平板波导上引入微结构实现对太赫兹波的调控。诸多手段中,太赫兹天线作为电磁场的传播场与局域场转换的关键部件,对太赫兹通信和太赫兹光谱等领域都有不可替代的作用。基于这一点,我们设计了一种尖端相对的棒状天线结构,使用 COMSOL ...

Radiation Heat Transfer in Imaging Infrared Spectrometer

A. Jhaveri [1], M. Kushhare [1], A. Bhargav [1],
[1] Indian Institute of Technology Gandhinagar, Gandhinagar, Gujarat, India.

Imaging Infrared Spectrometer (IIRS) is a Hyperspectral optical imaging instrument which measures the spectra of a scene in high resolution within spectral bands covering Near Infrared (NIR) to Mid Infrared (MIR) regions. Radiation entering the spectrometer assembly governs the temperature of different internal parts and hence plays an important role in determining the desired spectral ...

Optimized Illumination Directions of Single-Photon Detectors Integrated with Different Plasmonic Structures

M. Csete[1], Á. Sipos[1], A. Szalai[1], G. Szabó[1]
[1]Department of Optics and Quantum Electronics, University of Szeged, Szeged, Hungary

The optimal orientations of different single-photon detector designs were determined by COMSOL software package. Absorption of niobium-nitride (NbN) stripes in two different (p=220 nm, 3p=660 nm) periodic patterns integrated with plasmonic elements was studied. In OC-SNSPDs consisting of ~quarter-photon-wavelength nano-cavity the optimum direction is perpendicular incidence onto NbN stripes in P ...

Light Scattering Simulation of Nano-objects on the Surface of Silicon Wafers by 3D Finite Element Method

Y. Oshikane, T. Higashi, N. Taniguchi, M. Nakano, and H. Inoue
Dept. of Prec. Sci. and Technology
Grad. School of Eng.
Osaka University

Nanotechnology is rated as a key technology of the 21st century. In the field of nano-optics already at present, state-of-the-art scientific experiments and industrial applications exhibit nanometer to sub-nanometer design tolerances. This motivates the development and application of fast and accurate simulation tools for these fields or electromagnetic (EM) field.

Modeling of an Optical Black Hole with True Gaussian Beam Incidence

X. Ni[1], A. Kildishev[1], E. Narimanov[1], and L. Prokopeva[2]
[1]Purdue University, West Lafayette, IN, USA
[2]Russian Academy of Sciences, Novosibirsk, Russia

We model an ideal optical black hole device in COMSOL Multiphysics as an electromagnetic scattering problem. The device is illuminated with a Gaussian beam which is focused at a fixed position in horizontal direction (x0) and different positions in vertical direction (y0). The device is modeled as a cylindrical system with a gradient-index shell and absorbing core. Using the classical paraxial ...

Simulation, Fabrication and Observation of Plasmonic Halos

F. Ye[1], M. Burns[1], J. Merlo[1], M. Naughton[1]
[1]Department of Physics, Boston College, Chestnut Hill, MA, USA

We present the simulation, observation and systematic study of a novel optical phenomenon, a “plasmonic halo”, wherein optically pumped surface plasmons on circular silver microcavities form confined drumhead modes that, under off-resonant conditions, transform to colorful far field radiation at their circumferential boundaries. We simulated the surface plasmon drumhead modes via COMSOL ...