Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Shell-Isolated Nanoparticle-Enhanced Raman Spectroscopy: Insight from Simulations with COMSOL Multiphysics® Software

Song-Yuan Ding [1], Jun Yi [1], En-Ming You [1], Zhong-Qun Tian [1],
[1] State Key Laboratory for Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, iChEM, Xiamen University, Xiamen, China

Surface-enhanced Raman spectroscopy (SERS) has been developed as a versatile tool for trace-molecule detection and biomolecular analysis by coupled gold or silver nanostructures in the past two decades. However, SERS suffers from a long-term limitation of application for surface analysis of general materials. That is because the SERS hotspots in inter-particle nanogap generated from coupled ...

Super-lattice Effects in Ordered Core-shell Nanorod Arrays Detected by Raman Spectroscopy

A. Alabastri, R. Krahne, A. Giugni, G. Das, R. P. Zaccaria, M. Zanella, I. Franchini, and E. di Fabrizio
Italian Institute of Technology (IIT)
Genoa, Italy

We studied the optical phonon excitations (LO) of ordered arrays of dot/ rod core-shell CdSe/ CdS nanorods by Raman spectroscopy. Upon deposition on planar substrates the nanorods formed super-lattice structures via side-by side assembly into tracks over some microns of length. COMSOL Multiphysics software has been used to calculate the magnitude of the electric field generated by the ...

Liquid Crystal Based Terahertz Metamaterial Absorbers

Wang Lei [1],
[1] Nanjing University of Posts and Telecommunications, Nanjing, China

Metamaterial-based absorbers play a significant role in applications ranging from energy harvesting and thermal emitters to sensors and imaging devices. The middle dielectric layer of conventional metamaterial absorbers has always been solid. Researchers could not detect the near field distribution in this layer or utilize it effectively. Here, we use anisotropic liquid crystal as the dielectric ...

Study of the Structure of Photonic Crystal Fiber with High Negative Dispersion Coefficient

Jiang Xing-fang [1], Sun Chen-yang [1], Li Xin-lu [1],
[1] Changzhou University, Changzhou, China

The optical fiber communication has been popular topics besides robot study nowadays. In the process of the Dense Wave-Length Division Multiplexing (DWDM) study, the dispersion compensate for the traditional optical fiber is difficult to solve for long distance transport information. It is hard to solve this problem by experimental study on photonic crystals with high negative dispersion ...

Numerical Simulation of Bull's Eye Grating Using COMSOL Multiphysics® Software

D. Ray [1], A. Prabhakar [1],
[1] Indian Institute of Technology Madras, Chennai, Tamil Nadu, India

Plasmonic gratings like bull's eye can localize E field due to excitation of surface plasmons and when integrated with Ge-on-Si photodetector they can help in fabrication of ultra small photodiodes with high sensitivity. We have numerically carried out a frequency analysis for the grating using COMSOL Multiphysics® software with plane wave excitation at normal incidence. We have used the ...

A Study on the Suitability of Indium Nitride for THz Plasmonics

A. Shetty[1], K. J. Vinoy[1], S. B. Krupanidhi[2]
[1]Electrical Communication Engineering, Indian Institute of Science, Bangalore, India
[2]Materials Research Centre, Indian Institute of Science, Bangalore, India

As interest in the electromagnetic spectrum expands towards the infrared and terahertz range, the distinct advantages of using semiconductors instead of metals for plasmonic applications must be understood. Plasmonic resonances in gold (Au) and indium nitride (InN) gratings are studied, in the terahertz (?=30µm) regime. The electromagnetic properties of Au and InN are described by the Drude ...

Simulation of Field Enhancement in Anisotropic Transition Metamaterials using COMSOL

A. Pandey, and N. Litchinitser
The State University of New York at Buffalo
Buffalo, NY

Transition metamaterials constitute a new class of engineered materials which have material properties tailored in such a manner that the refractive index gradually changes from positive to negative. An important question is what happens at the interface of a positive and negative index material. In this work, we design anisotropic transition materials using metal-dielectric layers and study ...


李勇 [1], 方晖 [2],
[1] 晋中学院,太原,中国
[2] 深圳大学,深圳,中国

定量分析生物颗粒形态的变化可以为疾病诊断提供依据。例如血红细胞形态的变化常常会伴随有相应的血液疾病[1],细胞的癌变常常伴随有细胞核形态的变化[2]等等。无标记的光学显微成像技术已经可以对生物颗粒的尺度和形状进行直接测量。光声显微成像技术(PAM)利用生物颗粒固有的吸光本领,已经可以对单个生物颗粒(如细胞和细胞器)进行成像[3]。 最近,光声流式仪(the photoacoustic flow-cytometry)已经实现了对单个生物颗粒进行连续检测[4]。然而,为了在大量的生物颗粒中快速检测生物颗粒的形貌,最好的方法是并非对其进行直接成像,而是采用高频光声显微技术[5],它的分辨率来源于实际测量与光声功率谱的分析。 光声功率谱分析需要通过计算建模来获取。我们使用 COMSOL Multiphysics® 有限元分析软件的声学模块用来建模 MFC7 细胞核的光声功率谱 ...

Simulation of Reverse Saturable Absorption

N. Bambha [1],
[1] U.S. Army Research Laboratory, Hillandale, MD, USA

This poster describes a simulation of reverse saturable absorption in a solution C_60 molecules using the COMSOL Multiphysics® software. The optical processes in C_60 can be modeled through a five-level system. The energy states include three levels of the singlet state, coupled to two levels of an excited triplet state. The optical process is modeled with simple rate equations coupled to a ...

Optimizing the Fluorescence of Diamond Color Centers Encapsulated into Core-Shell Nano-Resonators

M. Csete [1], L. Z. Szabó [1], A. Szenes [1], B. Bánhelyi [2], T. Csendes [2], G. Szabó [1]
[1] Department of Optics and Quantum Electronics, University of Szeged, Szeged, Hungary
[2] Institute of Informatics, University of Szeged, Szeged, Hungary

INTRODUCTION Enhancement of a single-photon emission is a great demand in recent science and applications, including development novel class of light sources, encoded information transfer and biological imaging [1, 2, 3]. Fluorescence can be improved through excitation and emission enhancement. Improvement of these two processes can be realized by using the near-field enhancement accompanying ...