Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Calculating and Observing Opto-Mechanically Induced Surface Acoustic Waves in a Silica Whispering Gallery Microresonator

J. Zehnpfennig
Photonics Research Center
United States Military Academy
West Point, NY

Here we calculate opto-mechanically induced Surface Acoustic Waves upon a silica microresonator using COMSOL. Using conservation of momentum, we show both analytically and numerically that the photonphonon interaction within the resonator cavity causes a moving train of electrodes - a virtual grating of matter density – that displace material in different directions and magnitudes. This hyper ...

A Study on the Suitability of Indium Nitride for THz Plasmonics

A. Shetty[1], K. J. Vinoy[1], S. B. Krupanidhi[2]
[1]Electrical Communication Engineering, Indian Institute of Science, Bangalore, India
[2]Materials Research Centre, Indian Institute of Science, Bangalore, India

As interest in the electromagnetic spectrum expands towards the infrared and terahertz range, the distinct advantages of using semiconductors instead of metals for plasmonic applications must be understood. Plasmonic resonances in gold (Au) and indium nitride (InN) gratings are studied, in the terahertz (?=30µm) regime. The electromagnetic properties of Au and InN are described by the Drude ...

Numerical Simulation of Bull's Eye Grating Using COMSOL Multiphysics® Software

D. Ray [1], A. Prabhakar [1],
[1] Indian Institute of Technology Madras, Chennai, Tamil Nadu, India

Plasmonic gratings like bull's eye can localize E field due to excitation of surface plasmons and when integrated with Ge-on-Si photodetector they can help in fabrication of ultra small photodiodes with high sensitivity. We have numerically carried out a frequency analysis for the grating using COMSOL Multiphysics® software with plane wave excitation at normal incidence. We have used the ...

Modeling of a Nonlinear Hybrid Plasmonic Waveguide for Enhanced Surface Plasmon Polaritons Through Optical Parametric Amplification

D. Wang[1], T. Li[1], S. Wang[1], S. Zhu[1]
[1]Nanjing University, Nanjing, Jiangsu, China

Surface Plasmon Polaritions (SPPs), as electromagnetic waves localized at the surface of a metal, enjoy the unique properties to confine energy into sub-wavelength scale, which is beneficial for future photonic integration. However, the severe absorption caused by the metal influences the propagation distance greatly. Actually, SPPs loss can be compensated by optical parametric amplification in ...

Improving Detection Sensitivity for Nanoscale Targets Through Combined Photonic and Plasmonic Techniques

G. Zhang[1], Y. Zhao[1]
[1]Clemson University, Clemson, SC, USA

Photonic technique such as the whispering gallery mode (WGM) is often used for detection of small particles like bacteria and viruses. It offers good detection sensitivity and is advantageous over other detection techniques because the detection can be label free. However, the detection sensitivity may not be sufficient when the size of the detection target is in nanoscale. To change this, we ...


李勇 [1], 方晖 [2],
[1] 晋中学院,太原,中国
[2] 深圳大学,深圳,中国

定量分析生物颗粒形态的变化可以为疾病诊断提供依据。例如血红细胞形态的变化常常会伴随有相应的血液疾病[1],细胞的癌变常常伴随有细胞核形态的变化[2]等等。无标记的光学显微成像技术已经可以对生物颗粒的尺度和形状进行直接测量。光声显微成像技术(PAM)利用生物颗粒固有的吸光本领,已经可以对单个生物颗粒(如细胞和细胞器)进行成像[3]。 最近,光声流式仪(the photoacoustic flow-cytometry)已经实现了对单个生物颗粒进行连续检测[4]。然而,为了在大量的生物颗粒中快速检测生物颗粒的形貌,最好的方法是并非对其进行直接成像,而是采用高频光声显微技术[5],它的分辨率来源于实际测量与光声功率谱的分析。 光声功率谱分析需要通过计算建模来获取。我们使用 COMSOL Multiphysics® 有限元分析软件的声学模块用来建模 MFC7 细胞核的光声功率谱 ...

Analysis of Super Imaging Properties of Spherical Geodesic Waveguide Using COMSOL Multiphysics

D. Grabovi?ki?[1], J.C. González[1], P. Benítez[1], J.C. Miñano[1]
[1]Cedint Universidad Politécnica de Madrid, Madrid, Spain

Negative Refractive Lens (NRL) has shown that an optical system can produce images with details below the classic Abbe diffraction limit. This optical system transmits the electromagnetic fields, emitted by an object plane, towards an image plane producing the same field distribution in both planes. Recently, two devices with positive refraction, the Maxwell Fish Eye lens (MFE) (Leonhardt et al. ...

Analysis of a Plasma-Mediated Photoacoustic Response From Plasmonic Nanoparticles in Ultrashort Regime

A. Hatef [1], B. Darvish [1], A. Dagallier [2], C. Boutopoulos [2], M. Meunier [2],
[1] Nipissing University, North Bay, ON, Canada
[2] École Polytechnique de Montréal, Montréal, QC, Canada

Over the last decade, plasmonic nanoparticles (PNPs) have received growing interest as exogenous contrast agents in the thermal expansion based photoacoustic (PA) imaging technique in biomedical applications [1]. Such functionality is due to the localized surface plasmon resonance (LSPR) created by the light-induced coherent oscillation of the conduction electrons in the PNPs. In the near-field ...

Simulation of Field Enhancement in Anisotropic Transition Metamaterials using COMSOL

A. Pandey, and N. Litchinitser
The State University of New York at Buffalo
Buffalo, NY

Transition metamaterials constitute a new class of engineered materials which have material properties tailored in such a manner that the refractive index gradually changes from positive to negative. An important question is what happens at the interface of a positive and negative index material. In this work, we design anisotropic transition materials using metal-dielectric layers and study ...

Heterodimensional Charge-Carrier Confinement in Sub-Monolayer InAs in GaAs - new

S. Harrison[1], M. Young[1], M. Hayne[1], P. D. Hodgson[1], R. J. Young[1], A. Strittmatter[2], A. Lenz[2], U. W. Pohl[2], D. Bimberg[2]
[1]Department of Physics, Lancaster University, Lancaster, UK
[2]Institut für Festkörperphysik, Berlin, Germany

Low-dimensional semiconductor nanostructures, in which charge carriers are confined in a number of spatial dimensions, are the focus of much solid-state physics research, offering superior optical and electronic properties over their bulk counterparts. Both two-dimensional (2D) and zero-dimensional (0D) structures have seen wide-ranging applications in laser diodes, solar cells and LEDs to name ...