Model Gallery

The Model Gallery features COMSOL Multiphysics model files from a wide variety of application areas including the electrical, mechanical, fluid, and chemical disciplines. You can download ready-to-use models and step-by-step instructions for building the model, and use these as a starting point for your own modeling work. Use the Quick Search to find models relevant to your area of expertise, and login or create a COMSOL Access account that is associated with a valid COMSOL license to download the model files.

Magnetic Damping of Vibrating Conducting Solids

When a conductive solid material moves through a static magnetic field, an eddy current is induced. The current that flows through the conductor, which is itself moving through the magnetic field, induces a Lorentz force back on the solid. Therefore, a conductive solid that is vibrating in a static magnetic field will experience a structural damping. In this example, a cantilever beam is ...

A Tunable MEMS Capacitor

In an electrostatically tunable parallel plate capacitor, the distance between the two plates can be modified by a spring, as the applied voltage changes. For a given voltage difference between the plates, the distance of the two plates can be computed, if the characteristics of the spring are known. Knowledge of this means that the distance between the plates can be tuned via the ...

Electron Beam Diverging Due to Self Potential

When modeling the propagation of charged particle beams at high currents, the space charge force generated by the beam significantly affects the trajectories of the charged particles. Perturbations to these trajectories, in turn, affect the space charge distribution. The Charged Particle Tracing interface can use an iterative procedure to efficiently compute the strongly coupled particle ...

Linear Magnetostrictive Transducer

This tutorial shows a 3D model of a magnetostrictive transducer. The magnetostrictive core is made of Terfenol-D. The material behavior is assumed to be linear but magnetomechanically coupled. The core is surrounded by a coil. The transducer housing is made of a ferromagnetic material. The model is solved on a one-quarter symmetric geometry. The static model is solved for different values of ...

Mutual Inductance and Induced Currents in a Coil Group

The mutual inductance and induced currents between a single turn primary and twenty turn secondary coil in a concentric coplanar arrangement is computed using a frequency domain model. Each turn of the secondary coil is modeled explicitly. The results are compared against analytic predictions.

Dielectric Shielding Comparison

The dielectric shielding boundary condition is meant to approximate a thin layer of material with high relative permittivity compared to its surroundings. This boundary condition is available for electrostatic field modeling. This example compares the dielectric shielding boundary condition to a full-fidelity model and discusses the range of applicability of this boundary condition.

Inductance of a Power Inductor

Power inductors are a central part of many low-frequency power applications. They are, for example, used in the switched power supply for the motherboard and all other components in a computer. Computer simulations are necessary in the design of such inductors. This model calculates the inductance from specified material parameters.

Magnetically Permeable Sphere in a Static Magnetic Field

A sphere of relative permeability greater than unity is exposed to a spatially uniform static background magnetic field. Two formulations are used to solve this problem, and the differences between these are discussed. The field strength inside the sphere is computed and compared against the analytic solution.

Static Field Modeling of a Halbach Rotor

This model presents the static field modeling of an outward flux focusing magnetic rotor using permanent magnets. This magnetic rotor is also often called a Halbach rotor. The use of permanent magnets in rotatory devices such as motors, generators and magnetic gears is increasing. The accurate modeling of a permanent magnets fields is important. This model illustrates how to calculate the ...

An RFID System

RFIDs are used in a multitude of applications such as tracking or identifying consumer products and their packaging. An RFID system consists of two main parts: A tag or transponder with a printed circuit-board (PCB) antenna A reader unit with a larger RF antennaThe reader antenna generates an electromagnetic field that energizes a chip (IC-circuit) inside the tag. The electromagnetic field ...

Quick Search