Temesgen Kindo | July 27, 2015

How do we check if a simulation tool works correctly? One approach is the Method of Manufactured Solutions. The process involves assuming a solution, obtaining source terms and other auxiliary conditions consistent with the assumption, solving the problem with those conditions as inputs to the simulation tool, and comparing the results with the assumed solution. The method is easy to use and very versatile. For example, researchers at Sandia National Laboratories have used it with several in-house codes.

Read more ⇢

Post Categories

Bridget Cunningham | July 23, 2015

3D printing has emerged as a popular manufacturing technique within a number of industries. The growing demand for this method of manufacturing has prompted greater simulation research behind its processes. Engineers at the Manufacturing Technology Centre (MTC) have identified their customers’ interest in a particular additive manufacturing technique known as shaped metal deposition. By building a simulation app, the team is better able to meet the demands of their customers while delivering more efficient and effective simulation results.

Read more ⇢
Bettina Schieche | July 22, 2015

You may know of Boreas, the Greek god of North Wind, but did you know that it’s also the name of a German team for Formula 1 in schools? This is no coincidence; it describes their strong will to develop race cars that are “as fast as a storm”. With this spirit and COMSOL Multiphysics, the team won several qualifying races, reached third place in the 2014 world finals, and was honored with the innovation award for Research and Development.

Read more ⇢

Post Categories

Walter Frei | July 21, 2015

When modeling a manufacturing process, such as the heating of an object, it is possible for irreversible damage to occur due to a change in temperature. This may even be a desired step in the process. With the Previous Solution operator, we can model such damage in COMSOL Multiphysics. Here, we will look at the “baking off” of a thin coating on a wafer heated by a laser.

Read more ⇢

Post Categories

Pankaj Nerikar | July 20, 2015

Corrosion is a widely encountered issue in the automotive industry. To account for and prevent this problem, industry leaders often run experiments to test the corrosion resistance of vehicles. Simulation, however, offers a simplified approach to addressing this phenomenon in automobiles — one that saves time, money, and resources.

Read more ⇢

Post Categories

Caty Fairclough | July 17, 2015

Microfluidic systems often rely on valveless pumps, as they are both gentle on the biological material and low in the risk of clogging. However, by design, this type of pump is not suitable for viscous fluids and systems with small length scales or low flow rates. To overcome this limitation, you can introduce a micropump mechanism that converts oscillatory fluid motion into a unidirectional net flow.

Read more ⇢
Brianne Costa | July 16, 2015

The ancient Japanese art of origami enables you to create many intricate designs out of folded paper. Recently, researchers drew inspiration from this craft to develop a fully functional battery consisting mostly of paper and water. They found that the simple device generates enough energy to power a biosensor.

Read more ⇢

Post Categories

Bridget Cunningham | July 15, 2015

Phase change energy storage is an effective approach to conserving thermal energy in a number of applications. An important element in the efficiency of this storage process is the melting rate of the phase-change material, the storage medium. Using the principle of the constructal law as their foundation, a team of researchers sought to advance the performance of these storage systems.

Read more ⇢

Post Categories

Tommy Zavalis | July 14, 2015

Batteries generally operate through numerous processes that depend on even more parameters. How can you find out more about what’s going on within them? One approach is to look at the cell’s electrical impedance. The Lithium-Ion Battery Impedance demo app, available in the Application Gallery, can be used to interpret the impedance of a specific lithium-ion battery design with minimal effort. It can also help parameterize the system, a useful step for setting up accurate time-dependent models in the future.

Read more ⇢
William Vetterling | July 9, 2015

Today, we welcome guest blogger William Vetterling of ZINK Imaging to the COMSOL Blog. If you read the 2015 edition of COMSOL News, you may have seen my review of the newly released Application Builder. In that review, I shared an example of a simple thermal model of an IR microscope that we had created a year earlier for use in our laboratory at ZINK Imaging. Now I will share how we turned that model into an app.

Read more ⇢
Brianne Costa | July 8, 2015

Solar energy is created by combining sunlight with a semiconducting material, often silicon. But solar, or photovoltaic, cells require such a high-quality silicon that the manufacturing process is complicated and costly. As a photovoltaic material producer and furnace manufacturer, EMIX turned to COMSOL Multiphysics® simulation software to optimize their cold crucible continuous casting (4C) process and create the silicon needed for a more efficient solar-powered world.

Read more ⇢
1 2 3 4 5 85