Model Gallery

The Model Gallery features COMSOL Multiphysics model files from a wide variety of application areas including the electrical, mechanical, fluid, and chemical disciplines. You can download ready-to-use models and step-by-step instructions for building the model, and use these as a starting point for your own modeling work. Use the Quick Search to find models relevant to your area of expertise, and login or create a COMSOL Access account that is associated with a valid COMSOL license to download the model files.

Electrokinetic Valve

This model presents an example of pressure driven flow and electrophoresis in a 3D micro channel system. Researchers often use a device similar to the one in this model as an electrokinetic sample injector in biochips to obtain well-defined sample volumes of dissociated acids and salts and to transport these volumes. Focusing is obtained through pressure driven flow of the sample and buffer ...

Homogeneous Charge Compression Ignition of Methane

Homogeneous Charge Compression Ignition (HCCI) engines are being considered as an alternative to traditional spark- and compression-ignition engines. As the name implies, a homogeneous fuel/oxidant mixture is auto-ignited by compression with simultaneous combustion occurring throughout the cylinder volume. Combustion temperatures under lean burn operation are relatively low, resulting in low ...

Electrophoresis, Transport in a Capillary Column

The electrophoresis of a mixture containing benzoic acid and chlorobenzoic acid, with sodium acetate as background electrolyte, is studied in a model that includes the transport of the involved species through diffusion and migration. The transport equations are combined with the material balances and the electroneutrality condition. The neutralization reaction for all the involved acid-base ...

Electroosmotic Flow in Porous Media

This example treats the modeling of electroosmotic flow in porous media. The system consists of a compartment of sintered porous material and two electrodes that generate an electric field. The cell combines pressure and electroosmotic driven flow. The equations that are solved are the continuity equations for flow velocity and current density together with a mass balance using the ...

Stefan Tube - new

This example illustrates the use of the Maxwell-Stefan diffusion model available with the Transport of Concentrated Species interface. It models multicomponent gas-phase diffusion in a Stefan tube 1D. In this case, it is a liquid mixture of acetone and methanol that evaporates into air. The concentration profiles are modeled at steady-state and validated against experimental data by Taylor and ...

Liquid Chromatography

In the simplest terms, High Performance Liquid Chromatography (HPLC) is a separation technology - a process used to separate different chemical species that are in a mixture. And while HPLC is one of many separation technologies available, it is the most prevalent because of its versatility. These systems are most commonly used in the pharmaceutical and biotech industries, in functions as ...

Oscillating Droplet - new

Cemented tungsten carbides are hard metals used in steel cutting tools. They are produced by heating a powder consisting typically of tungsten carbide (WC) grains and cobalt (Co) grains. When the powder is heated, the cobalt melts but the tungsten carbide remains solid. The liquid cobalt glues the tungsten carbide grains together and forces air to flow out of the material. When the medium is ...

Optimal Cooling of a Tubular Reactor

Maximizing product yield is a main task in chemical reaction engineering. This can be especially challenging if the desired product, once formed, can be consumed by further reactions. This example investigates such a series reaction as it occurs in a tubular reactor. You will start by setting up the tightly coupled mass and energy balance equations describing the reactor using predefined ...

Determining Arrhenius Parameters using Parameter Estimation

This model shows how to use the Parameter Estimation feature in the Reaction Engineering interface to find the Arrhenius parameters of a first order reaction where Benzene diazonium chloride decomposes to benzene chloride and nitrogen.

Maxwell-Stefan Diffusion in a Fuel Cell Unit Cell

In concentrated gases and liquids, where the concentrations of species are of the same order of magnitude, there is no obvious solvent-solute relationship. Fick’s law for diffusion accounts only for one-way solute-solvent interactions whereas the Maxwell-Stefan equations account for all interactions of species in a solution. In a system with three components, three pair-wise interactions are ...

Quick Search