Application Gallery

The Application Gallery features COMSOL Multiphysics tutorial and demo app files pertinent to the electrical, mechanical, fluid, and chemical disciplines. You can download ready-to-use tutorial models and demo apps with step-by-step instructions for how to create them yourself. The examples in the gallery serve as a great starting point for your own simulation work.
Use the Quick Search to find tutorials and apps relevant to your area of expertise. Log in or create a COMSOL Access account that is associated with a valid COMSOL license to download the MPH-files.

Modeling Stress Dependent Elasticity

This model shows how to implement a stress dependent elasticity problem. The material Young's modulus is changing based on the stress value.

Kirsch Infinite Plate Problem

This model describes a static stress analysis to obtain the stress distribution in the vicinity of a small hole in an infinite plate. The model is a classic benchmark and is described in Mechanics of Material, by D. Roylance. The stress level is then compared with the theoretical values.

Thick Plate Stress Analysis

A benchmark model where a thick plate exposed to pressure on the top surface is analyzed. The solution is compared with a NAFEMS benchmark solution.

Scordelis-Lo Roof Shell Benchmark

In this example a thin curved membrane is built and solved using the Shell interface. This model is a widely used benchmark model denoted the Scordelis-Lo roof. The computed maximum z-deformation is compared with the value given in Proposed Standard Set of Problems to Test Finite Element Accuracy, Finite Elements in Analysis and Design, 1985.

Mixed-Mode Debonding of a Laminated Composite

Interfacial failure by delamination or debonding can be simulated with a Cohesive Zone Model (CZM). This example shows the implementation of a CZM with a bilinear traction-separation law. It is used to predict the mixed-mode softening onset and delamination propagation in a composite material.

Heat Generation in a Vibrating Structure

When a structure is subjected to high frequency vibrations, a significant amount of heat can be generated due to mechanical (viscoelastic) losses in the material. A second mechanism contributing to the slow temperature rise in a vibrating structure is called thermoelastic damping, and represents the energy conversion between mechanical and thermal energy. In this example, a fully coupled ...

Assembly with a Hinge

In mechanical assemblies, parts are sometimes connected so that they are free to move relative to each other in one or more degrees of freedom. Examples of such connections are ball joints, hinges, and different types of bearings. If the details of the connection are not the subjects of the analysis, it is often possible to model the connection using the Rigid Connector feature in COMSOL ...

Wrapped Thick Cylinder under Pressure and Thermal Loading

This model is compared to a NAFEMS benchmark for composite material modeling, No R0031/2. The geometry is a long, thick, and hollow cylinder consisting of two layers, where an internal pressure is applied. The inner layer is made from an isotropic material, while the outer layer is made from an orthotropic material. This material's properties are equal in the radial and axial directions, yet ...

Absorptive Muffler with Shells

This model describes the pressure wave propagation in a muffler for an internal combustion engine. The purpose of the model is to show how to analyze both inductive and resistive damping in pressure acoustics as well as coupling the fluid to the surrounding elastic shell structure of the muffler. Finally, the eigenmodes of a pure structural problem is analyzed and the modes compared to peaks in ...

Hertzian Contact

A long elastic cylinder resting on a flat rigid foundation is analyzed. The cylinder is subjected to a uniform load along its top. The contact pressure distribution is compared with the analytical solution

Quick Search