Fundamental Three Dimensional Modeling and Parameter Estimation of a Diesel Oxidation Catalyst for Heavy Duty Trucks

A. Holmqvist[1] and C.U.I. Odenbrand[1]

[1]Department of Chemical Engineering, Faculty of Engineering, LTH, Lund University, Lund, Sweden

Mathematical optimization can be used as a computational engine to generate the best solution for a given problem in a systematic and efficient way. In the context of monolithic converter systems, the parameter estimation problem (or inverse problem) is solved using Partial Differential Equations (PDE)-based models of the physical system coupled with an optimization algorithm. These problems are usually underdetermined due to the lack of enough data to constrain a unique solution. Inverse modeling refers to the practice of using given experimental data to calibrate the model so as to reproduce the experimental results in the best way possible. The exact solution of inverse problems plays a key role in the development of dynamic models, which in turn can promote functional understanding at the system level.