Technical Papers and Presentations

Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Numerical simulations of heat effects compared to measurements in III-V semiconductor saturable absorbers.

LePaul, S., Yang, N., Aniel, F.
Institut d’Electronique Fondamentale, Université Paris XI – CNRS UMR 8622, Orsay

The major purpose of this communication is to share our experiences on the numerical difficulties we ended up in simulating heating effects of saturable absorbers based on III-V semiconductors with the commercial finite element software FEMLAB 3.1. Saturable absorbers are devices devoted to full optical signal regeneration in optical telecom systems. The self heating effects in the structures ...

FEM Characterization of Terahertz Wave on Metal Wire Waveguides

Deibel, J.A., Wang, K., Escarra, M.D., Mittleman, D.M.
Department of Electrical and Computer Engineering, Rice University, Houston, TX, USA

The terahertz (THz) region of the electromagnetic spectrum (100 GHz to 10 THz) remained relatively unexplored until developments in ultrafast laser technology provided techniques for the generation and detection of THz radiation. Recently, simple metal wires were found to be effective terahertz waveguides that exhibited very low loss and dispersion. The THz radiation propagates along the surface ...

Modeling the Thermo-mechanical Behavior of a “V”-shaped Composite Buckle-beam Thermal Actuator

Kushkiev I., Jupina, M.A.
Department of Electrical and Computer Engineering, Villanova University, Villanova, PA

In this paper, we validate a numerical model of a “V”-shaped buckle-beam electro-thermal actuator through FEMLAB simulation. The motivation here is similar to that of the simulation of purely electronic VLSI circuits: before manufacturing a prototype, one wishes to virtually build the device and predict its behavior. FEMLAB allowed us to study the effect of temperature dependant ...

On Teaching Chemical Engineering Fundamentals Using FEMLAB

William M. Clark,
Worcester Polytechnic Institute

We are investigating the feasibility of using FEMLAB as an integral part of the educational experience of chemical engineering students at Worcester Polytechnic Institute. Our current practices and immediate plans for using FEMLAB in teaching include homework and projects in a graduate course, simulations of unit operations laboratory experiments for use as pre-lab preparations for actual lab ...

Simulation of Faults by Means of Finite Element Analysis in a Switched Reluctance Motor

Briso-Montiano, J.R., Karrelmeyer, R., Dilger, E., Bosch, R.
Robert Bosch GmbH Stuttgart, Dept. CR/AEY

The influence of the presence of errors in the behavior of a switched reluctance motor is investigated in this paper. The dynamic response of a Switched Reluctance Motor (SRM) is analyzed by the coupled structural and electromagnetic Finite Element Method (FEM). The dynamic behavior of the motor under failure operation can lead us to non-invasive diagnosis of faults and rotor eccentricity in ...

Numerical Calculations of Pulsed Laser Heating of Non-isotropic Materials

Gamborg Andersen, G., Petrunin, V.V., Baurichter, A.
University of Southern Denmark, Physics Department, Odense, Denmark

We used FEMLAB (Finite Element Modelling LABoratory) for modelling heat propagation in 4 dimensions (time and the 3 spatial dimensions) after pulsed laser heating of non-isotropic materials during surface science experiments. As an example, the spatial and temporal evolution of a laser induced temperature jump in highly oriented pyrolytically grown graphite (HOPG) was calculated on a ns time ...

A computational fluid dynamics model of a 20Kg induction stirred laboratory scaled ladle

Pal, M., Eriksson, R., Jönsson, P.
MSE, KTH-Stockholm

In this paper a computational fluid dynamics model of a 20 Kg laboratory scaled induction ladle is presented. This particular laboratory furnace can be equipped with an electromagnetic stirrer, which can be used to agitate the steel melt. The CFD model so developed will make it feasible to have information about the fluid flow in this particular laboratory furnace. The objective of this paper ...

Model predictive control of a complex rheological forming process based on a finite element model

Bernard, T., Herrero Blanco, I., Peters, M.
Fraunhofer Institute for Information and Data Processing IITB, Business Unit Systems for Measurement, Control, and Diagnosis (MRD), Karlsruhe

Rheological forming processes of glass and plastics, where heat conduction, radiation and fluid dynamics are the main physical effects, are strongly nonlinear. The aim of this paper is to investigate a control design with the use of the spatially distributed model. As control methodology we investigate linear and nonlinear model predictive control (MPC, NMPC) schemes. These approaches are ...

Double Gate MOSFET modeling

Gidon, S.
CEA Grenoble Leti

We use the MOS transistor model from COMSOL as a template to do our own model of double gate MOSFET. At the present time, it seems that double gate devices- going to non-planar transistor architectures- could be a solution for sub-32nm nodes. In addition, new design flexibility is allowed when gates are not interconnected. However, appropriate models must be developed. In our investigation, we ...

Confinement Loss Computations in Photonic Crystal Fibres using a Novel Perfectly Matched Layer Design

Viale, P., Février, S., Gérôme, F., Vilard, H.
IRCOM, CNRS UMR 6615, Limoges, France

To modelize infinite photonic crystal fibre (PCF) with 2D-finite-geometry mode solver, it is necessary to use a perfectly matched layer (PML). We have performed a new type of PML design to simulate propagation in PCFs. The results obtained with index-guiding PCFs are in very good agreement with previous theoretical published results. Our PML is quickly optimized. The link between MATLAB and ...

Quick Search