Technical Papers and Presentations

Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

FEM Characterization of Terahertz Wave on Metal Wire Waveguides

Deibel, J.A., Wang, K., Escarra, M.D., Mittleman, D.M.
Department of Electrical and Computer Engineering, Rice University, Houston, TX, USA

The terahertz (THz) region of the electromagnetic spectrum (100 GHz to 10 THz) remained relatively unexplored until developments in ultrafast laser technology provided techniques for the generation and detection of THz radiation. Recently, simple metal wires were found to be effective terahertz waveguides that exhibited very low loss and dispersion. The THz radiation propagates along the surface ...

3D electromagnetic modelling of a cold crucible for induction electro-processing of materials

Ernst, R.
EPM-MADYLAM laboratory, CNRS, Saint Martin d’Hères, France

The cold crucible is a tool which is frequently used for induction heating applications for the elaboration of materials by middle or high frequency magnetic field. This crucible is made of copper sectors assembled together to form the container in which the electroconductive material is molten. Each sector is water cooled, which keeps the crucible cold when the material is heated and molten ...

Mechanical model of electrostatically actuated shunt switch

Eriksson, A.
Uppsala Universitet

A component used in RF-MEMS systems is the electrostatically actuated shunt switch. We show how this type of switch can be simulated using a simple mechanical FEMLAB model where electrostatic forces are modelled by a pressure load. The static as well as dynamic properties of the switch are analysed, e.g. static pull in and pull out voltages and displacements, dynamic switch up and down times ...

Numerical Simulation of the Electrochemical Impedance of a Microelectrode using FEMLAB

Gabrielli, C., Keddam, M., Rousseau, P., Vivier, V.
UPR 15 CNRS “LISE”, case 133 - Université P. & M. Curie, Paris, France

Numerical simulations of electrochemical impedance diagrams are reported using a 2D-axis symmetry FEM calculations. The impedance is the ratio of the potential over the current, but it is highly depending of the concentration of the various chemical species in the solution, particularly the ionic ones wich are sensible to migration, diffusion and convection effects. In this study, only the ...

Finite element modeling of the field enhancement phenomenon in nanoscale field emitters and field ionizers

Ramin Banan Sadeghian and Mojtaba Kahrizi,
Concordia University

Interest in nanoscale field emission and field ionization devices has been renewed in recent years. Several new materials and novel device concepts have been introduced with promising field emission (FE) and field ionization (FI) behavior. Among them vertical ZnO nanowires (ZnONW) exhibit unique FE properties at relatively low applied electric fields. Using FEMLAB, we employed finite element ...

An Integrated Approach for Simulating Bone Adaptation of Shape and Material Properties using FEMLAB with MATLAB and Simulink

Liu, X., Hart, R.T.
Tulane University, Department of Biomedical Engineering

A new computational approach for simulating bone adaptation was implemented using FEMLAB with MATLAB and Simulink. A Simulink model was created to describe shape adaptation of bone as a negative feedback system, in which the adaptation driving signals tend to return to an equilibrium range in which no shape adaptation will occur. FEMLAB was invoked using a MATLAB S-function in the Simulink ...

Modelling massive forming processes with thermally coupled fluid dynamics

Schmitter, E.D.
University of Applied Sciences Osnabrueck

With massive forming processes like rolling, extrusion and friction stir welding metal alloys are deformed in a hot solid state. Material flow under ideally plastic conditions can be modelled with computational fluid dynamics (CFD). This approach has advantages especially in case of large deformations. Material properties enter via a viscosity function, that can be related to the flow stress ...

Freie Konvektion im Vertikalen Spalt – Analytische Lösungen und Numerische Simulation

Bühler, K.
Hochschule Offenburg, FB Maschinenbau und Verfahrenstechnik

Durch Temperaturunterschiede hervorgerufene freie Konvektionsströmungen treten in Natur und Technik in vielfältiger Form in Erscheinung. Damit verbunden sind wichtige Wärmetransportprozesse. Analytische Lösungen sind nur für einfache Sonderfälle bekannt, wie die einschlägige Literatur (Jischa 1982, Merker 1987, Müller&Ehrhard 1999) zeigt. Für die vertikalen Spaltströmungen mit ...

Electromagnetic material properties sensor

Gamache, R.W.
TransTech Systems, Inc

Recent research conducted by the author has shown that electromagnetic sensors can be utilized to determine selected properties of heterogeneous material mixtures containing water by observing the manifestations of surface polarization effects that occur in the radio frequency portion of the electromagnetic spectrum. Prior to the availability of multiphysics finite element (FEM) or finite ...

Ultrasound Propagation in Viscoelastic Material Guides

Castaings, M.1, Predoi, M.V.2, Hosten, B.1 1 Laboratoire Mécanique Physique, Univ. Bordeaux 1, UMR CNRS 5469, Talence, France
2 Catedra de Mecanica, Universitatea Politehnica Bucuresti, Bucuresti, Romania

Wave propagation in elastic waveguides is a problem of constant interest from the last decades. Several numerical approaches exist. The most intuitive uses time-marching routines that solve the equations of dynamic equilibrium and supply displacements of the structure nodes as time functions. This procedure is usually time and memory consuming due to huge number of temporal iterations required ...

Quick Search