Technical Papers and Presentations

Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Modelling of Catalytic Radiant Heaters

J.P.Mmbaga, T.M. Mannan, N. Joederi, S.E. Wanke, and R.E. Hayes
University of Alberta

In this work we present the modelling of catalytic radiant heaters. The presentation outlines the mathematical model as well as a Laboratory setup of a catalytic radiant heater.

Magnetic Liquids for Lab-on-a-chip and Rapid Diagnostics Applications

H. Köser
Yale University

In this presentation we outline our recent work on Magnetic Liquids, and the great number of application areas these are used. Ferrofluids are nanometer sized magnetic particles, covered by a surfactant, suspended in a carrier medium compatible with the surfactant material. Ferrofluids are applicable to a great and ever increasing number of application areas, such as: • Liquid Seals and ...

Modeling Electrochemical Systems with Multiphysics

R.E. White
University of South Carolina

In this presentation we introduce the concept of Electrochemical Engineering through simulations in COMSOL Multiphysics. Our special case studies are: • a Parallel Plate Electrochemical Reactor, • a Rotating Ring Disk System, • a 3D Lithium Ion Battery, • a Portable Power System, • a Corroding Surface. These examples are all industrial ones, which shows the power of using ...

Influence of COMSOL on the Design and Testing of the High Flux Isotope Reactor HB-4 Cold Source: Validation of the Simulation

J. D. Freels
Oak Ridge National Laboratory

This presentation concerns our numerical and experimental research on the High Flux Isotope Reactor HFIR, located at the Oak Ridge National Laboratory. In this presentation we give a Brief Pictorial Introduction to the HFIR, som physical properties of Supercritical Hydrogen, and Simulations of both natural and forced convection problems using COMSOL Multiphysics. This presentation also ...

Grain Boundary Migration Model in Copper Interconnects

Tim Cale, Daniel Bentz, and Max Bloomfield, RPI

We discuss the use of 3D grain continuum modeling to study grain boundary migration driven by differences in strain energy density. COMSOL Multiphysics is used to compute stresses and strain energy densities in polycrystalline structures caused by temperature changes. We treat each grain as a single crystal, with the anisotropic elastic properties of single crystal Cu appropriately rotated to ...

3D Scanning for simulations

N. Nuar
Rutgers University

In this work, we present the principles of 3D scanning. 3D scanning is the process of taking an object in the real world and through finding the relative phase in camera coordinates and projector coordinates, produces a 3D model.

Multiphysics 2007

J. Dunec
COMSOL, Palo Alto

In this presentation we present where COMSOL Multiphysics and its modules will be in the year 2007. The presentation considers the upcoming features, not only from a developers point of view, but also through examples from different branches of applied physics and mathematics. In addition, we present some important milestones during the past 10 years for COMSOL ...

Chemical Pulse Dynamics and Control in Microdesigned Catalysts: Phenomena, Modeling and Computational Wrappers

L. Qiao, and I.G. Kevrekidis
Department of Chemical Engineering, Princeton University

We study the effect of two-dimensional composite catalyst geometry and spatiotemporal laser heating on the dynamics of CO oxidation on a Pt (110) surface. The project involves a combination of modeling, computation and experimentation. We show (through both FEMLAB and specially designed experiments) that local laser heating actuation appropriately designed in space and time can be critical in ...

Using COMSOL Multiphysics in Advanced Engineering

Advanced Computational & Engineering Services
Columbus, Ohio

In this presentation we give a thorough introduction to advanced engineering using COMSOL Multiphysics. We introduce you to many disciplines of engineering and physics as well as multidisciplinary, multiscaled multiphysics.

Numerical Modeling of EM Pump Efficiency

D.P. Cook, Y. Chen, H.Chen, and J. Ma
University of Nevada, Las Vegas

The pilot Molte lead-bismuth target circuit (TC-1) in the University of Nevada was designed for beam power of 1 MW accelerator driven system (ADS). Circulation of the liquid alloy is driven by an annular linear induction pump. A numerical study of the pump efficiency has been conducted to determine which operational parameters are responsible for this low efficiency and to give insight ...

Quick Search