Technical Papers and Presentations

Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Comparison of Darcy's Law, the Brinkman Equation, the Modified Navier-Stokes Equation and the Pure Diffusion Equation in PEM Fuel Cell Modeling

Z. Shi and X. Wang
Oakland University, Rochester, MI, USA

A two dimensional isothermal single phase PEM fuel cell model is developed and implemented in COMSOL Multiphysics, where Darcy's law, the Brinkman equation, the modified Navier-Stokes equation, and the pure diffusion equation are applied separately in porous electrodes. Three values of GDL permeability are investigated. Additionally, the order of the magnitude of each term in the modified N-S ...

Modeling of Two-Phase Flows

K. O. Lund
Engineering Consultant to SML Associates, Del Mar, CA, USA

Viscous equations are developed for regions with two interacting flowing fluids, or two fluid phases, such as occur in fluidized particle beds or the mixing of fluids. The descriptive equations are rendered into the standard COMSOL PDE matrix form, and solved over typical two-dimensional regions, as time-dependent interacting laminar flows.The model geometry selected is that of a so-called ...

Magnetic Particle Motion in a Gradient Field

U. K. Veeramachaneni, and R. Lloyd Carroll
Department of Chemistry, West Virginia University, Morgantown, WV, USA

A model is presented for predicting the motion of magnetizable particles in a gradient magnetic field, considering the effects of fluidic forces on particles in the micro system.The micro system consists of a gradient magnetic field (such as that produced by a solenoid or permanent magnet), a magnetizable particle, and the fluid surrounding the particle (water).Particles located in the gradient ...

3D Modeling of Impedance Spectroscopy for Protein Detection in Nanoneedle Biosensors

H. Esfandyarpour1,2, A. Maiyegun1, and R. W. Davis2
1Center for Integrated Systems, Department of Electrical Engineering, Stanford University, Stanford, CA, USA
2Stanford Genome Technology Center, Stanford, CA, USA

We present a preliminary investigation of a Nanoneedle biosensor as an ultra sensitive and localized impedance biosensor using COMSOL.This preliminary study was performed to prove the feasibility of the impedance biosensor for detection of protein or nucleic acids. By monitoring the change in capacitance and impedance of this structure, we aim to characterize and classify biological species such ...

Kinetics of Carbon Dioxide Absorption into Mixed Aqueous Solutions of MDEA and MEA using Laminar Jet Apparatus and Numerically Solved Absorption-Rate/Kinetic Model

M. Edali1, A. Aboudheir2, and R. Idem1
1Process Systems Engineering, University of Regina, Regina, SK, Canada
2HTC Purenergy, Regina, SK, Canada

The experimental kinetic data obtained with a laminar jet apparatus for the absorption of carbon dioxide (CO2) in CO2 loaded mixed solutions of mixed MDEA and MEA were interpreted with the aid of a comprehensive numerically-solved absorption rate/kinetic model. The partial differential equations in this model were solved by two numerical techniques; the finite difference method (FDM) based on an ...

COMSOL-Based Numerical Analysis of The Electric Field Distribution During Electrospinning and Piezo-response Imaging of Ultra-Fine Lead Zirconate Titanate Fibers

Y. Wang and J. Santiago-Avilés
Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA, USA

In this paper, we present our results on synthesizing micro and nanoscopic lead zirconate titanate (PZT) fibers using electrospinning. Furthermore, the PZT fibers have been characterized using the piezo-response imaging (PRI) technique originally developed for the characterization of piezoelectric thin films.As both electrospinning and PRI work by virtue of electric field, the desired spatial ...

Simulation of Clamped-Free and Clamped-Clamped Microbeams Dynamics for Nonlinear Mechanical Switch Applications

M. Uncuer, B. Marinkovic, and H. Koser
Department of Electrical Engineering, Yale University, New Haven, CT, USA

This work focuses on the nonlinear dynamics of clamped-free and clamped-clamped microbeams under electrostatic and shock loading for microswitch applications. This type of analysis essentially requires the consideration of the well-known "pull-in" phenomenon under dynamic conditions. In this work, we show that a micro switch that makes contact above a certain voltage but is otherwise immune to ...

Calculating the Capacitance of Shielded Microstrip Lines

S. M. Musa, and M. N. O. Sadiku
College of Engineering, Prairie View A&M University, Prairie View, TX, USA

This paper presents a numerical analysis for calculating the capacitance of singlestrip and double-strip shielded transmission lines. Modeling and simulation of the capacitance of shielded microstrip lines using COMSOL are illustrated. We determined the capacitance per unit length of each shielded microstrip line.We compared our results with those obtained by other methods and found them to be in ...

Modeling Convective Heat Transfer under Laminar Flow of a Newtonian Fluid in Simple Geometries

B. Baron, and E. Gutierrez-Miravete
Department of Engineering and Science, Rensselaer at Hartford, Hartford, CT, USA

This paper reports on a series of studies using COMSOL Multiphysics, carried out to investigate the phenomena of fully developed and developing laminar flows of a Newtonian fluid initially at constant temperature, between parallel plates and through circular tubes, where heat exchange takes place at the interface between the fluid and the plates or the tube wall.Selected numerical results were ...

3D Modeling of a Surface-Acoustic-Wave (SAW) Based Sensor

Y. Rao1, and G. Zhang1,2
1Micro/Nano Bioengineering Laboratory, Athens, GA, USA
2Nanoscale Science and Engineering Center, Faculty of Engineering, The University of Georgia, Athens, GA, USA

In this study, the effect of adding nanostructures to the sensitive layer and changing the layer’s material property on the characteristics of SAW propagation is investigated under two types of wave perturbation: an impulse wave function and a sinusoidal wave function.To simulate the effect of adsorption of certain molecular species, the models are analyzed under two conditions: with and ...

Quick Search

1 - 10 of 82 First | < Previous | Next > | Last