See How Multiphysics Simulation Is Used in Research and Development

Engineers, researchers, and scientists across industries use multiphysics simulation to research and develop innovative product designs and processes. Find inspiration in technical papers and presentations they have presented at the COMSOL Conference. Browse the selection below or use the Quick Search tool to find a specific presentation or filter by application area.


View the COMSOL Conference 2023 Collection

2016 - Allx

Numerical Simulations of Ion Cyclotron Range of Frequency (ICRF) Wave Fields in a Linear Plasma Device

M. Usoltceva [1], K. Crombé [4], E. Faudot [3], S. Heuraux [3], R. D’Inca [2], J. Jacquot [2], J-M. Noterdaeme [5], R. Ochoukov [2]
[1] Department of Applied Physics, Ghent University, Belgium; Max-Planck-Institut für Plasmaphysik, Garching, Germany; Université de Lorraine, Nancy, France
[2] Max-Planck-Institut für Plasmaphysik, Garching, Germany
[3] Université de Lorraine, Nancy, France
[4] Department of Applied Physics, Ghent University, Ghent, Belgium; LPP-ERM-KMS, TEC partner, Brussels, Belgium
[5] Department of Applied Physics, Ghent University, Belgium; Max-Planck-Institut für Plasmaphysik, Garching, Germany

Fusion devices (tokamaks, stellarators) require hundreds of millions degree Celsius temperature to reach the plasma state when the fusion reactions start to occur. Ion cyclotron resonance heating (ICRH) is a method of energy transfer to the ions in the plasma from electromagnetic ... Read More

Simulating Organogenesis with COMSOL Multiphysics® software: Phase-Field Based Simulations of Embryonic Lung Branching Morphogenesis

L. D. Wittwer [1], R. Croce [1], D. Iber [1],
[1] ETH Zürich, Zurich, Switzerland

While many biological details in organogenesis have been uncovered, fundamental questions regarding the control of growth and shape during lung and kidney morphogenesis remain unsolved. Using mathematical models, we recently showed that only ligand-receptor based Turing models ... Read More

Determination of the Load-dependent Thermal Conductivity of Porous Adsorbents

O. Kraft [1], J. Gaiser [1], M. Stripf [1],
[1] University of Applied Sciences, Karlsruhe, Baden-Würtemberg, Germany

Standard measuring techniques for thermal conductivity cannot be readily applied to determine the load-dependent thermal conductivity of porous adsorbents, because the local ad- and desorption inside the specimen and the thickness of the specimen are not considered. Hence, in this work a ... Read More

Melt Homogenization Improvement By Optimizing the Rotation Profile

J. Petit [1], V. Tabouret [1], B. Viana [2],
[1] ONERA, Chatillon, France
[2] IRCP/CNRS, Paris, France

During the last decades, mid-IR (3-12µm) laser sources have attracted attention due to their potential applications in different fields like infrared counter-measures (e.g: missile jamming) and remote chemical sensing. In this context, Onera has been working on the development of non ... Read More

Investigation of Reverse ElectroDialysis Units by Multi-Physical Modelling

L. Gurreri [1], F. Santoro [1], G. Battaglia [1], A. Cipollina [1], A. Tamburini [1], G. Micale [1], M. Ciofalo [1],
[1] Dipartimento di Ingegneria Chimica, Gestionale, Informatica, Meccanica (DICGIM), Università degli Studi di Palermo (UNIPA), Palermo, Italy

Salinity gradient represents an interesting renewable energy source. Reverse ElectroDialysis (RED) is an ion exchange membrane-based process that convert directly the salinity gradient energy into electric current. Thereby, two solutions at different concentrations are fed into two ... Read More

Modeling the Effect of a Crack on the Flow-Induced Vibration of Supported Pipes

J. H. Lee [1], S. M. Al-Said [2],
[1] American University of Sharjah, Sharjah, United Arab Emirates
[2] Jordan University of Science and Technology, Irbid, Jordan

In this paper, the effect of a crack to the flow-induced vibration characteristics of supported pipes is investigated based on vibration method. In order to estimate the crack location and depth in the pipe, we need to utilize the variation of the difference between the natural ... Read More

Modeling of the Electrochemical Reduction of CO2 to Methanol in a Micro Flow Cell

Y. Kotb [1], S. K. Fateen [2], J. Albo [3], I. Ismail [1],
[1] Renewable Energy Engineering Program, University of Science and Technology, Zewail City, Giza, Egypt
[2] Department of Chemical Engineering, Cairo University, Giza, Egypt
[3] Department of Chemical Engineering, University of the Basque Country, Apdo. 644, Bilbao, Spain

Carbon dioxide levels are increasing faster than in hundreds of thousands of years due to fossil fuels burning. A serious worldwide interest is growing towards the field of CO2 valorization as a step in transitioning away from fossil fuel economy at the same time of decreasing CO2 ... Read More

The Spherical Design Algorithm in the Numerical Simulation of Fiber-Reinforced Biological Tissues

M. Carfagna [1], A. Grillo [1],
[1] Dipartimento di Scienze Matematiche, Politecnico di Torino, Italy

The numerical results of the unconfined compression test on a sample of Articular Cartilage (AC) are discussed. AC is modelled as a load-bearing, deformable, fiber-reinforced material filled with an interstitial fluid and comprising statistically oriented collagen fibers, chondrocytes, ... Read More

Phase Decomposition for Loudspeaker Analysis

R. Christensen [1],
[1] GN ReSound A/S, Copenhagen, Denmark

The vibration of an electrodynamic loudspeaker driver causes a resulting sound pressure. For simple pistonic vibration, there is a simple relationship between the vibration and the sound pressure. For complex vibration patterns, however, different parts of the vibrating surface ... Read More

HAMSTAD Benchmarks Using the COMSOL Multiphysics® Software Revisited

J. v. Schijndel [1], S. Goesten [1], H. Schellen [1],
[1] Eindhoven University of Technology, Eindhoven, Netherlands

Benchmarks are important tools to verify computational models. In the research area of building physics, the so-called HAMSTAD (Heat, Air and Moisture STAnDardization) project is a very well known benchmark for the testing of simulation tools. In this paper we revisit this benchmark by ... Read More