Technical Papers and Presentations

Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Three-Dimensional Finite Element Modeling of Magnetic Flux Leakage Technique for Detection of Defects in Carbon Steel Plates

W.S. Singh, S. Thirunavukkarasu, S. Mahadevan, C. Mukhopadhyay, B.P.C. Rao, and T. Jayakumar
Non Destructive Evaluation Division, Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam Tamil Nadu, India

Three-dimensional finite element (FE) modeling of magnetic flux leakage (MFL) technique has been performed using COMSOL 3.4 for prediction of leakage fields from surface and sub-surface defects in a 12 mm thick carbon steel plate. The tangential and normal components of leakage fields have been predicted to study the influence of defect location and depth on the detectability of sub-surface ...

Electrostatic Fluid Structure Interaction (EFSI) on the Huygens Experiment

R. Godard [1], J. de Boer[1], N. Ibrahim[2], and G. Molina-Cuberos[3]
[1]Royal Military College of Canada, Kingston, ON, Canada
[2]University of Toronto, Toronto, ON, Canada
[3]Campus Espinardo, Murcia, Spain

The Huygens Atmospheric Structure Instrument (HASI) was designed to characterize the physical properties of the lower atmosphere and surface of Titan, the planet-size moon of Saturn. The Relaxation Probe (RP) sensor on the Huygens probe, determined the electrical conductivity in the lower atmosphere of Titan, from 140 km to 40 km. It was suspected that at an altitude above 100km, the booms ...

Finite Element Analysis of Multilayer Transmission Lines for High-Speed Digital Interconnects

S.M. Musa, and M.N.O. Sadiku
Prairie View A&M University, Prairie View, TX, USA

In this paper, we consider the finite element modeling of multilayer transmission lines for high-speed digital interconnects. Using COMSOL we mainly focused on the modeling of the transmission structures with both cases of symmetric and asymmetric geometries. We specifically designed asymmetric coupled microstrips and four-line symmetric coupled microstrips with a two-layer substrate. We ...

Effect of an Iron Yoke of the Field Homogeneity in a Superconducting Double-Helix Bent Dipole

P.J. Masson, and R.B. Meinke
Advanced Magnet Lab, Palm Bay, FL, USA

Charged particle accelerators require large dipole fields with stringent homogeneity requirements needed to bend particle beams without defocussing. Commonly superconducting saddle coil magnets are used with an iron core to enhance the bore field. The iron uneven magnetization brings undesired multipole fields that need to be compensated for by pre-conditioning the beam with additional magnets. ...

Dielectric Stress and Coordination Study in the PAB72 High Voltage Circuit Breaker Interrupter

D. Andrade, and D. Schiffabuer
Pennsylvania Breaker LLC, Canonsburg, PA, USA

Pennsylvania Breaker presents a dielectric stress study for its 72kV class breaker. This study was instrumental in the design and testing procedures during the research and development phase. COMSOL was incorporated into the design pipeline as an important tool for rapid reference of complicated and costly steady state electric cases. The purpose of this study was to develop a robust geometric ...

COMSOL Multiphysics Modeling for Design Optimization of Eddy Current Crack Detectors

E. Weststrate, M. Steinback, N. Rensing, and T. Tiernan
Radiation Monitoring Devices Inc., Watertown, MA, USA

Passing alternating current through a wire placed just above a conducting surface induces eddy currents in that surface. Any cracks present in the conductor modify the eddy current distribution, creating a magnetic field signature unique to the crack. This magnetic signature can be detected by placing magnetic field sensors such as magnetoresistive sensors or inductive loop pickups in close ...

Gauss's Law; Teaching Platform Using the Magic Cube: Implementation by COMSOL Multiphysics

H. Ghali, and A. Hossam
Electrical Engineering Department, British University in Egypt, Cairo, Egypt

Most probably Gauss\'s law is considered as the first \"electromagnetic\" concept for early undergraduate physics and electromagnetic courses. In early study year, teaching Gauss’s law is usually performed based on two main components; 1) The use of simple symmetrical charge distributions where a correct expectation of the spatial behavior of the electric flux density is possible and 2) The use ...

Optimization Of The Collection Of Sprays By An Enhanced Electronic Sensor

J. Berges[1], B. Barelaud[1], I. Niort[2], and J.L. Decossas[2]
[1]XLIM, Limoges, France
[2]Université de Limoges, France

We propose the study of an electronic sensor allowing the collection of sprays in free space. The detector consists of three elements: a photodiode situated in the center of the structure to which is applied a bias voltage, an aluminum ring which referenced to a voltage higher than that of the photodiode and an insulating material disk (polyvinyl chloride). The total size of the structure is ...

FEM-Investigations Of Superconductor/Ferromagnet Heterostructures: A Compliance Test Between Various Models

P. Krüger[1], F. Grilli[1], Y. Genenko[2], and R. Brambilla[2]
[1]Karlsruhe Institute of Technology, Germany
[2]Technical University Darmstadt, Germany, ERSE Spa, Milan, Italy

In recent years, a number of numerical and finite-element-methods in particular - some implemented in COMSOL - have been developed to investigate various properties of superconducting materials. Following converse conclusions by different models regarding similar physical phenomena, the consistency of these models has been of increased interest. In this publication the accordance of an ...

Simulation And Verification Of Thomson Actuator Systems

A. Bissal, G. Engdahl, E. Salinas, and M. Ohrstrom
ABB / KTH, Stockholm, Sweden

The Thomson coil’s (TC) inherent characteristics are appropriate to meet the needs of high speed actuators for mechanical switching devices in so-called smart grids. This is due to the massive forces that it can exert in the time scale of milliseconds. A coupled COMSOL Multiphysics model is developed in 2D involving spice circuits, Magneto-statics, and Moving Mesh Mode for predicting the motion ...

Quick Search