Quick Search

Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

COMSOL Multiphysics® Modelling for Li-ion Battery Ageing

P. Singh[1], N. Khare[2], P. K. Chaturvedi[3]
[1]Banasthali University, Banasthali, Rajasthan, India
[2]EOS Energy Storage, Edison, NJ, USA
[3]SRM University, Ghaziabad, Uttar Pardesh, India

Introduction: Recently, Li-ion battery is being widely used as power source for various applications from electronic gadgets to automotive industry. The performance and cycle life of Li-ion battery are becoming gradually important issues as the applications are shifting from small scale consumer electronics to dynamic power applications (Electric Vehicles, Hybrid Electric Vehicles). To create a ...

Capacitance Computation of Multilayered and Multiconductor Interconnects Using Finite Element Method

S. Musa, and M. Sadiku
College of Engineering, Prairie View A&M University, Prairie View, TX, USA

The development and analysis of interconnects in inhomogeneous structures such as very large scale integration chips, printed circuit boards, and multichip modules are essential for next-generation electronic products. In this paper, we illustrate fast and sufficiently accurate computation of capacitance matrices of multilayered and multiconductor interconnects applying the finite element ...

Field-Circuit Coupling Applied to Inductive Fault Current Limiters

D. Lahaye[1], D. Cvoric[2], S. de Haan[2], and J. Ferreira[2]
[1]Delft Institute of Applied Mathematics, Department of Electrical Engineering, Mathematics and Computer Sciences, TU Delft, The Netherlands
[2]Electrical Power Processing Unit Department of Electrical Engineering, Mathematics and Computer Sciences, TU Delft, The Netherlands

Fault Current Limiters (FCLs) are expected to play an important role in the protection of future power systems due to the rising levels of the short-circuit currents. The inductive FCLs, comprising magnetic cores and one or more dc and ac windings, are particularly interesting because they inherently react on the fault. The so-called open-core FCL configuration employs only one magnetic core for ...

Using COMSOL Multiphysics for Designing a Hybrid Electromagnetic Launcher

R. Kroczek, and J. Domin
Silesian University of Technology, Gliwice, Poland

This paper describes consecutive stages of design and construction of electromagnetic gun manufactured at the Silesian University of Technology. It gives insight into current knowledge about such a launcher. The computer model was elaborated in COMSOL Multiphysics version 3.5. The numerical analysis was carried out a 3-dimensional space. The physical model was build up and comparison of the ...

Two-Dimensional Quasi–Static Analysis For Induction Motor with Faulty Rotor

M. Manna, and S. Miglani
Punjab, India

This paper presents the Finite Element Method technique for predicting performance of Induction motor having Electric and Magnetic asymmetry for rotor cage due to some broken rotor bars. The motor parameters like magnetic vector potential, flux density, surface currents have been determined very precisely by carrying out two dimensional quasi static, transient analysis and by using one of the ...

Modeling the ELENA Electron Cooler with COMSOL Multiphysics® Software - new

G. Tranquille[1]
[1]CERN, Geneva, Switzerland

ELENA is a small cooler decelerator ring at CERN which will be built to increase substantially the number of usable antiprotons delivered to experiments for studies with antihydrogen and antiprotonic nuclei. COMSOL Multiphysics® software has been used to completely model the ELENA electron cooling device in 3D. We have taken advantage of the different physics-based modules of COMSOL ...

On the Influence of Cancellous Bone Structure upon the Electric Field Distribution of Electrostimulative Implants - new

U. Zimmermann[1], R.Bader[2], U. van Rienen[1]
[1]Institute of General Electrical Engineering, University of Rostock, Rostock, Germany
[2]Department of Orthopaedics, University Medicine Rostock, Rostock, Germany

Since the 1980s, the accelerating effect of electromagnetic fields on bone regeneration is used to treat complicated fractures and bone diseases. At the University of Rostock, an electrostimulative hip revision system is developed, basing on the method of Kraus-Lechner. This method requires an electric fields between 5 and 70 V/m. The bone used for the simulations consisted of two homogenous ...

A Modeling Study of Electrical Characteristics of Anisotropic Conductive Film Adhesives

R. Divigalpitiya
3M Canada Company, London, ON, Canada

Finite element analysis provides new insights into the electrical behavior of conducting adhesives. We show that at a contact between a spherical conducting particle and a flat conducting substrate the current distribution is non-uniform: the current is concentrated at the periphery of the contact. In practice, the current concentration has important implications. We further shed light on what ...

Design of a High Field Gradient Electromagnet for Magnetic Drug Delivery to a Mouse Brain

I. Hoke, C. Dahmani, T. Weyh

Heinz-Nixdorf Lehrstuhl für Medizinische Elektronik, Fakultät für Elektro-und Informationstechnik, Technische Universität München, Germany

The application of nanoparticles coupled with medical agents to brain tumors remains one of the biggest obstacles in neuro scientific research. This work explores an optimal design of an electromagnet to overcome the blood-brain barrier by means of an intensive external magnetic field gradient. It is found that the field gradients depend strongly on the design of the magnet tip. The model ...

Development of an On-Line Wall-Fouling Sensor for Pipeline Transportation of Heavy Oil-Water Mixtures

S. Rushd[1], and R.S. Sanders[1]
[1]Chemical & Materials Engineering Department, University of Alberta, Edmonton, AB, Canada

A beneficial method for transporting highly viscous hydrocarbons (e.g. heavy oil and bitumen) through a pipeline is known as Lubricated Pipe Flow (LPF). A major challenge for this technology is flow instability caused by the formation of a wall-coating of oil or the thinning and/or loss of the lubricating water layer in the pipe. This issue can be addressed by using capacitance sensors to measure ...