Technical Papers and Presentations

Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

The Geometrical Optimization of MSFL Pad Design by COMSOL Multiphysics® and Design of Experiments

T. Hao[1], J. M. Singer[1]
[1]GE Oil & Gas, Farnborough, UK

Introduction Micro-Spherically Focused Logging (MSFL) tool is a microresistivity open-hole logging tool designed to measure the resistivity of the flushed zone, a region of formation close to the borehole, independent of any mudcake on the borehole wall. Original designs of MSFL were conducted mainly by the resistor network method and experiments in the 1970s and no further optimization work ...

On the Influence of Cancellous Bone Structure upon the Electric Field Distribution of Electrostimulative Implants

U. Zimmermann[1], R.Bader[2], U. van Rienen[1]
[1]Institute of General Electrical Engineering, University of Rostock, Rostock, Germany
[2]Department of Orthopaedics, University Medicine Rostock, Rostock, Germany

Since the 1980s, the accelerating effect of electromagnetic fields on bone regeneration is used to treat complicated fractures and bone diseases. At the University of Rostock, an electrostimulative hip revision system is developed, basing on the method of Kraus-Lechner. This method requires an electric fields between 5 and 70 V/m. The bone used for the simulations consisted of two homogenous ...

Radially and Tangentially Magnetized PM BLDC Motor - A Comparative Analysis Using Finite Element Method - new

K.S. Shinoy[1], Anjana M.P.[2]
[1]Vikram Sarabhai Space Centre, Thiruvananthapuram, Kerala, India
[2]M A College of Engineering, Kothamangalam, Kerala, India

Several permanent-magnet excited rotor types for a brushless DC motor can be designed regarding their applicability based on the arrangement of the permanent magnets; since the rotor configurations strongly influence the performance of permanent magnet electrical machines. Surface mounted, radially magnetized permanent magnet design is mostly preferred due to its ease of construction and ...

Using COMSOL Multiphysics for the Modelling of a Hybrid Linear Stepper Motor

R. Wislati, and H. Haase
Institut für Grundlagen der Elektrotechnik und Messtechnik, Leibniz Universität Hannover, Hannover, Germany

In this paper a 2-phase hybrid linear stepper motor (HLSM), also known as Sawyer linear motor, has been considered as a potential approach in Variable Valve Actuation (VVA) Systems for Internal Combustion Engines.Initially, the reluctance network approach (RNA) with lumped parameters has been used assuming an infinite permeability of the steel core. The results have then been compared with a ...

A Modeling Study of Electrical Characteristics of Anisotropic Conductive Film Adhesives

R. Divigalpitiya
3M Canada Company, London, ON, Canada

Finite element analysis provides new insights into the electrical behavior of conducting adhesives. We show that at a contact between a spherical conducting particle and a flat conducting substrate the current distribution is non-uniform: the current is concentrated at the periphery of the contact. In practice, the current concentration has important implications. We further shed light on what ...

Modeling of Lightning Direct Effects - Interaction of Continuing Current with Aluminum Skins

Y. Kostogorova-Beller[1], and R. Collins[2]
[1]National Institute for Aviation Research, Wichita, KS, USA
[2]Hawker Beechcraft Corporation, Wichita, KS, USA

An interaction of aluminum aircraft skins with a laboratory-simulated, low-level, long-duration, continuing current representative of a natural lightning flash was modeled with COMSOL Multiphysics. For the analysis of the lightning direct effects on aircraft, the external environment is represented by the idealized current components. Particularly Component C is used and is characteristic of ...

Transient Analysis of an EMVD Using COMSOL Multiphysics

G.E. Stebner[1], C. Hartwig[1]
[1]Ostfalia University, IMEC, Wolfenbüttel, Germany

In this paper an EMVD (Electro-Mechanical Valve Drive) for combustion engines is redesigned to achieve a fail-safe behavior when power loss occurs. The AC/DC Module and the Moving Mesh interface of COMSOL Multiphysics 4.2 are used to build up a transient model. This model also includes the calculation of eddy currents.

Electric Field Density Distribution for Cochlear Implant Electrodes

N.S. Lawand[1], J. van Driel[2], P.J. French[2]
[1]Electronic Instrumentation Laboratory (EILab), Faculty of Electrical Engineering, Mathematics and Computer Science (EEMCS), Delft University of Technology, Delft, The Netherlands
[2]Delft University of Technology, Delft, The Netherlands

Cochlear Implants are implantable devices which bypasses the non-functional inner ear and directly stimulates the hearing nerve with electric currents thus enabling deaf people to experience sound again. Implant electrode array design is limited in electrode count, due to their large size in accordance to scala tympani (ST) with restrictions for deeper insertion in ST thus depriving access to low ...

Numerical Analysis of the Response of Thick Wires to Extreme Dynamic Electro-Mechanical Loads

R. Cunrath[1], M. Wickert[2]
[1]Fraunhofer EMI, Efringen-Kirchen, Germany
[2]Fraunhofer EMI, Freiburg im Breisgau, Germany

Research at Fraunhofer EMI addresses the response of materials in extreme dynamic loads. Besides mechanical or thermal loads, intense electric pulse currents also represent an extreme dynamic load. Experimentally, metallic samples, mainly thick wires, were electro-mechanically loaded with currents up to 400 kA. For this purpose, a test rig containing a high-voltage pulsed power supply and ...


王梁[1], 胡勇[1]


Quick Search