Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Computational Optimization of Battery Grid for Efficiency and Performance Improvement

V. Panneerselvam [1], R. C. Thiagarajan [1]
[1] ATOA Scientific Technologies Pvt Ltd, Bengaluru, India

Battery grids are critical system used in automobile, renewable energy, medical devices and mobile phones. Research efforts are directed to increase energy density, longevity and reduce the cost. This paper is related to computational optimisation of lead acid battery for efficiency and performance improvement. Battery grid is the precursor for the active material and current distribution in ...

Simulation of Production Processes using the Multiphysics Approach: The Electrochemical Machining Process

R. van Tijum
Dr.
Advanced Technology Center, Philips Consumer Lifestyle, Drachten, The Netherlands

Redmer van Tijum studied Applied Physics at the University of Groningen. In 2006, he received his PhD title on ‘Interface and surface roughness of polymer metal laminates’ in the field of Material Science at the University of Groningen. After that he became research and development engineer at Philips, where he focussed his attention on the improvement of production processes mainly ...

Numerical Simulation of Electrolyte-Supported Planar Button Solid Oxide Fuel Cell

A. Aman[1], R. Gentile[1], Y. Chen[1], X. Huang[2], Y. Xu[1], N. Orlovskaya[1]
[1]Department of Mechanical, Materials and Aerospace Engineering, University of Central Florida, Orlando, FL, USA
[2]Department of Mechanical Engineering, University of South Carolina, Columbia, SC, USA

Solid oxide fuel cells (SOFCs) are electrochemical conversion devices that utilize ceramics as their electrolyte material for oxygen conduction. Compared to other types of fuel cells, they operate at relatively high temperatures, typically 400°C to 1000°C, and have an electrical efficiency over 50% and combined heat and power efficiency over 80%. One way to improve cell performance is to use ...

Classical Models of the Interface Between an Electrode and an Electrolyte

E. Gongadze[1], S. Petersen[1], U. Beck[2], and U. van Rienen[1]
[1]Institute of General Electrical Engineering, University of Rostock, Rostock, Germany
[2]Institute of Electronic Appliances and Circuits, University of Rostock,
Rostock, Germany

The Electrical Double Layer (EDL) plays a major role in understanding the interface between a charged surface (e.g. an implant) and ionic liquids (e.g. body fluids). The three classical models of the EDL (Helmholtz, Gouy, and Chapman-Stern) are numerically solved for a flat surface electrode in the 3D Electrostatics application mode of COMSOL Multiphysics® 3.5a. The values of the electric ...

Studying PEM Fuel Cells using Equation Based Simulation

J. Blackburn [1], N. McCartney [1],
[1] National Physical Laboratory, London, UK

We present computer simulation results for PEM fuel cells using COMSOL Multiphysics® software. We have developed novel PDE equations at NPL from first principles and these are more realistic than models typically used in literature. The theory includes Maxwell-Stephan and Nernst-Planck equations for the diffusion and electrochemistry as well as equations governing electrostatic and stress/strain ...

COMSOL Multiphysics® Modelling for Li-ion Battery Ageing

P. Singh[1], N. Khare[2], P. K. Chaturvedi[3]
[1]Banasthali University, Banasthali, Rajasthan, India
[2]EOS Energy Storage, Edison, NJ, USA
[3]SRM University, Ghaziabad, Uttar Pardesh, India

Introduction: Recently, Li-ion battery is being widely used as power source for various applications from electronic gadgets to automotive industry. The performance and cycle life of Li-ion battery are becoming gradually important issues as the applications are shifting from small scale consumer electronics to dynamic power applications (Electric Vehicles, Hybrid Electric Vehicles). To create a ...

Multiphysics Simulation of a Circular-Planar Anode-Supported Solid Oxide Fuel Cell

K. Daneshvar[1], A. Fantino[1], C. Cristiani[1], G. Dotelli[1], R. Pelosato[1], M. Santarelli[2]
[1]Politecnico di Milano, Dipartimento di Chimica, Materiali e Ingegneria Chimica “G. Natta”, Milano, Italy
[2]Politecnico di Torino, Dipartimento di Energetica, Torino, Italy

A 2D isothermal axisymmetric model of an anode-supported Solid Oxide Fuel Cell (SOFC) has been developed. Also a parametric analysis to find the effect of important parameters on the cell performance has been done. This simulation has been carried out at 1 atm and 1073 K. The PEN materials are traditional ones: Ni-YSZ/YSZ/LSM-YSZ as anode, electrolyte and cathode respectively.The developed ...

Copper Electroplating Parameters Optimization

L. M. A. Ferreira [1],
[1] CERN , Geneva, Switzerland

Aqueous based copper electroplating seems the most reliable, flexible, cost effective method to create a copper layer on stainless steel coupler devices; this however, doesn’t imply a straightforward application, as subcomponents geometry is complex and tolerances are tight. At CERN, two existing copper electroplating baths were tested to evaluate the feasibility of plating three couplers ...

Numerical Simulation of the Lithium-Ion Battery Cell Discharge Characteristics - new

Z. Umar[1], D. Ledwoch[1], L. Komsiyska[1], S. Vasić[[1]
[1]EWE-Forschungszentrum für Energietechnologie e. V, Oldenburg, Germany

In general battery cells are charged/discharged using constant current or constant power expressed as C-Rates and P-Rates respectively. We are developing a single cell-level Li-Ion battery model in order to simulate the performance and the physicochemical phenomena under power discharging mode (P-Rate). The P-Rate is defined as the measure of the rate at which a battery charges/discharges ...

Modeling the Electroplating of Hexavalent Chromium

N. Obaid[1], R. Sivakumaran[1], J. Lui[1], A. Okunade[1]
[1]University of Waterloo, Waterloo, ON, Canada

This project modeled an industrial chromium plating process for automotive components. The process was modeled via the COMSOL Multiphysics® Electrodeposition Module. The simulation examined the effect of solution conductivity, electrode spacing, and anode height utilizing a factorial design approach. A sensitivity analysis was used to study the effect of these variables on the thickness value at ...