Quick Search

Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

CFD Modeling and Analysis of a Planar Anode Supported Intermediate Temperature Solid Oxide Fuel Cell - new

N. Lemcoff[1], M. Tweedie[2]
[1]Rensselaer Polytechnic Institute Hartford, Hartford, CT, USA
[2]Enthone, West Haven, CT, USA

A planar anode-supported intermediate temperature solid oxide fuel cell operating on syngas fuel at 750°C was analyzed in this study. The effects of varying syngas fuel inlet compositions on species and temperature distributions, water gas shift reaction rate, potential for carbon formation and electrochemistry were considered. A 2-D COMSOL® model was developed which included separate defined ...

Modeling of Liquid Water Distribution at Cathode Gas Flow Channels in Proton Exchange Membrane Fuel Cell – PEMFC

S. Skoda[1], E. Robalinho[2], A. Paulino[1], E.F. Cunha[1], M. Linardi[1]
[1]Instituto de Pesquisas Energéticas e Nucleares, São Paulo, Brazil
[2]Universidade Nove de Julho, São Paulo, Brazil

The objective of this study is to determine the locations where liquid water accumulates at cathode gas flow channels, and the corresponding operating conditions. In such way it is possible to mitigate slug flow, responsible for channel blockage and hindering the diffusion of reactants to the catalytic sites. The model presented here is a comprehensive PEMFC 3D model, which includes liquid water ...

Topology Optimization of Lithium-Ion Battery Electrode Microstructure Morphology for Reduction of Damage Accumulation and Longevity of Battery Life - new

P. Clarke[1], R. Abedi[1]
[1]University of Tennessee Space Institute, Tullahoma, TN, USA

The ubiquitous commercial use of Lithium-Ion batteries (LIBs) has increased interest in their implementation into efficient energy storage systems for clean and renewable power sources and the electrical transportation industry. Unfortunately, LIBs are not yet technological mature to meet various commercial demands. Consider the following challenges for example,: (1) lower than desired effective ...

Classical Models of the Interface Between an Electrode and an Electrolyte

E. Gongadze[1], S. Petersen[1], U. Beck[2], and U. van Rienen[1]
[1]Institute of General Electrical Engineering, University of Rostock, Rostock, Germany
[2]Institute of Electronic Appliances and Circuits, University of Rostock,
Rostock, Germany

The Electrical Double Layer (EDL) plays a major role in understanding the interface between a charged surface (e.g. an implant) and ionic liquids (e.g. body fluids). The three classical models of the EDL (Helmholtz, Gouy, and Chapman-Stern) are numerically solved for a flat surface electrode in the 3D Electrostatics application mode of COMSOL Multiphysics® 3.5a. The values of the electric ...

Comparison Between Turbulent and Laminar Bubbly-Flow for Modeling H2/H2O Separation

E. Amores Vera[1], J. Rodríguez Ruiz[1]
[1]Centro Nacional del Hidrógeno, Puertollano, Spain

One of the most critical aspects on water electrolysis is gas-liquid separation, especially in systems with forced convection. The main problem of this kind of circulation is that a gas fraction could return to the electrolysis circuit. A suitable design of separator devices could be a solution in order to avoid a gas return to the electrolysis circuit. In this sense, the use of deflectors might ...

COMSOL Multiphysics® Based Identification of Thermal Properties of Mesoporous Silicon by Pulsed Photothermal Method - new

N. Semmar[1], I. El Abdouni[1], A. Melhem[1]
[1]GREMI-UMR7344, CNRS/University of Orléans, Orléans, France

The silicon is mainly known under its single-crystal shape and polycrystalline. Since a few decades, a new type of morphology is developed: the porous silicon (p-Si). Meso-porous silicon (Mp-Si) is one of promising materials for future microelectronic chips multi-functionalization systems, and for micro-sensing devices. For thermal properties investigation many experimental systems were ...

Tertiary Current Distributions on Rotating Electrodes

L. Tong
Kesoku Engineering System Co., Ltd.,
Japan

The tertiary current distributions on rotating electrodes are studied in this work. An acid copper sulfate electrolyte is used within an electrochemical cell of practical dimensions. The distributions of ion concentrations are obtained by the two-dimensional fluid flow simulation and the solution of mass-transport equations based on axial symmetry.

Numerical Analysis of Propeller-induced Low-frequency Modulations in Underwater Electric Potential Signatures of Naval Vessels in the Context of Corrosion Protection Systems

D. Schaefer[1], J. Doose[2], A. Rennings[1], and D. Erni[1]
[1]General and Theoretical Electrical Engineering (ATE), Faculty of Engineering, University of Duisburg-Essen, Duisburg, Germany
[2]Technical Center for Ships and Naval Weapons (WTD 71), Bundeswehr, Eckernförde, Germany

Since October 2009 the laboratory of ATE has carried out collaborative research with the WTD 71 that aims for prediction, reduction and optimization of so-called underwater electric potential (UEP) signatures. COMSOL is used to simulate potential distributions in the context of impressed current cathodic protection (ICCP) systems. The electrode kinetics is considered by using boundary conditions ...

Fluid Flow and Current Density Distribution in Large-area HT PEMFCs

G. C. Bandlamudi[1,2], C. Siegel[2], C. Heßke[1], and A. Heinzel[1,2]
[1]ZBT Duisburg, Duisburg, Germany
[2]University of Duisburg-Essen, Duisburg, Germany

High temperature polymer electrolyte membrane fuel cells (HT PEMFCs) are very promising technologies when used in combined cooling and heating power (CCHP) systems. They are operated at 160°C, offering the possibility of high tolerance to fuel impurities and a possibility to use the heat generated for cooling and heating purposes, leading to higher total system efficiency. Employing a ...

Current Density Distribution and Material Removal Behavior on the Graphite/Iron-matrix Interface in Cast Iron Under Pulse Electrochemical Machining Conditions

O. Weber[1], R. Kollmannsperger[2], D. Bähre[2]
[1]Center for Mechatronics and Automatization, Saarbrücken, Germany
[2]Institute of Production Engineering, Saarland University, Saarbrücken, Germany

The Pulse Electrochemical Machining is especially suitable for the precise production of complex geometric contours with high precision and high surface quality demands in workpieces in series manufacturing. During this process, the negative structure of an electrode is copied to the workpiece without sub-surface damages. An adequate knowledge of the current density distribution and thus of the ...