Technical Papers and Presentations

Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Modeling of Ammonia-fed Solid Oxide Cells in COMSOL Multiphysics®

D. Cheddie[1]
[1]University of Trinidad and Tobago, Couva, Trinidad and Tobago

This paper presents a 2D model of an intermediate temperature ammonia-fed SOFC (400 – 700 °C) based on the Temkin-Pyzhev model of ammonia decomposition. Phenomenological equations are implemented in COMSOL Multiphysics®. The Dusty Gas Model is used to model species transport in porous media, but a modification of Fick’s Law is used. Results show that intermediate temperatures can alleviate ...

COMSOL Multiphysics® Based Identification of Thermal Properties of Mesoporous Silicon by Pulsed Photothermal Method - new

N. Semmar[1], I. El Abdouni[1], A. Melhem[1]
[1]GREMI-UMR7344, CNRS/University of Orléans, Orléans, France

The silicon is mainly known under its single-crystal shape and polycrystalline. Since a few decades, a new type of morphology is developed: the porous silicon (p-Si). Meso-porous silicon (Mp-Si) is one of promising materials for future microelectronic chips multi-functionalization systems, and for micro-sensing devices. For thermal properties investigation many experimental systems were ...

Comparison Between Turbulent and Laminar Bubbly-Flow for Modeling H2/H2O Separation

E. Amores Vera[1], J. Rodríguez Ruiz[1]
[1]Centro Nacional del Hidrógeno, Puertollano, Spain

One of the most critical aspects on water electrolysis is gas-liquid separation, especially in systems with forced convection. The main problem of this kind of circulation is that a gas fraction could return to the electrolysis circuit. A suitable design of separator devices could be a solution in order to avoid a gas return to the electrolysis circuit. In this sense, the use of deflectors might ...

Modeling of the Material/Electrolyte Interface and the Electrical Current Generated During the Pulse Electrochemical Machining of Grey Cast Iron

O. Weber[1], A. Rebschläger[1], P. Steuer[1], D. Bähre[2]
[1]Center for Mechatronics and Automatization, Saarbrücken, Germany
[2]Institute of Production Engineering, Saarland University, Saarbrücken, Germany

The Pulse Electrochemical Machining is especially suitable for the precise production of complex geometric contours with high precision and high surface quality demands in series manufacturing. During this process, the negative structure of an electrode is copied to the workpiece without sub-surface damages. An adequate knowledge of the current and thus of the material removal behavior is ...

Statistical Sensitivity Analysis of Li-ion Pouch Battery Cell Dimension and Design

A. Samba[1], N. Omar[2], H. Gualous[3], Y. Firouz[2], O. Capron[2], M. Abdel MonemO[2], J. Smekens[2], P. Van den Bossche[2], J. Van Mierlo[2]
[1]VUB ETEC, Brussel, Belgium and UCBN, LUSAC, Cherbourg, France
[2]VUB ETEC, Brussel, Belgium
[3]UCBN, LUSAC, Cherbourg, France

Multi-Scale and Multi-Dimensional (MSMD) modeling approaches have been proposed to simulate the thermal, electrical distributions and concentration behaviors of large size pouch cell. This approach is based on coupling of the energy balance with the Newman’s electrode model. Newman’s 1D electrochemical model is often used for small size batteries but not sufficient enough for large size where ...

Catalyst Degradation in PEM Fuel Cells - Modeling Aspects

G. Vaivars, P. Ndungu, and V. Linkov
South African Institute of Advanced Material Chemistry, University of the Western Cape, Cape Town, South Africa

In a fuel cell-powered engine, the fuel is converted to electrical energy through electrochemical reactions instead of combustion. Long term stability is required for automobile and other energy system applications. The agglomeration of catalyst particles leads to an irreversible decrease of the electrochemical performance, and there are no viable methods to compensate for this phenomenon.Complex ...

Design and Simulation of MEMS Based Piezoelectric Vibration Energy Harvesting System

M. C. B. Kumar[1], D. B. Prabhu[1], R. Akila[1], A. Gupta[1], M. Alagappan[1]
[1]PSG College of Technology, Coimbatore, Tamil nadu, India

This paper discusses the simulation studies on a vibration based energy harvesting system to convert the undesirable mechanical vibration to useful green power. The design consists of a resonating proof mass and a spring system enclosed in housing and fixed on the source of vibration. A piezoelectric suspension acts as the transducer and generates a voltage that is used to charge the batteries of ...

Simplified Multiphysics Model for All-Solid State Microbatteries

M.S. Nesro[1], I.M. Elfadel[1]
[1]Masdar Institute of Science and Technology, Masdar City, Abu Dhabi, UAE

Lithium microbatteries are replacing conventional power sources in many microsystems areas such as wireless sensors and biomedical monitors. In many of these applications, compact models of micro batteries are needed both at the microsystems design stage and at the real-time power management stage. These compact models are typically derived from physics-based discretized formulations. We have ...

Modeling the Vanadium Oxygen Fuel Cell

F.T. Wandschneider[1], M. Küttinger[1], P. Fischer[1], K. Pinkwart[1], J. Tübke[1], H. Nirschl[2]
[1]Fraunhofer-Institute for Chemical Technology, Pfinztal, Germany
[2]Karlsruhe Institute for Technology, Karlsruhe, Germany

A two-dimensional stationary model of a vanadium oxygen fuel cell is developed in COMSOL Multiphysics®. This energy storage device combines a vanadium flow battery anode and an oxygen fuel cell cathode. The oxygen reduction reaction generates additional water, leading to a degradation of the catalyst performance over time. A logistic function is introduced to the Butler-Volmer equation in order ...

Classical Models of the Interface Between an Electrode and an Electrolyte

E. Gongadze[1], S. Petersen[1], U. Beck[2], and U. van Rienen[1]
[1]Institute of General Electrical Engineering, University of Rostock, Rostock, Germany
[2]Institute of Electronic Appliances and Circuits, University of Rostock,
Rostock, Germany

The Electrical Double Layer (EDL) plays a major role in understanding the interface between a charged surface (e.g. an implant) and ionic liquids (e.g. body fluids). The three classical models of the EDL (Helmholtz, Gouy, and Chapman-Stern) are numerically solved for a flat surface electrode in the 3D Electrostatics application mode of COMSOL Multiphysics® 3.5a. The values of the electric ...

Quick Search