Technical Papers and Presentations

Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Dynamic Simulation of Electrochemical Etching of Silicon with COMSOL

A. Ivanov[1], U. Mescheder[1]
[1]Furtwangen University, Furtwangen, Germany

In the presented work the dynamic simulation of a silicon anodization process is performed. Two mechanisms of etch form development (diffusion in electrolyte, current flow) are considered and simulated. Influence of electrolyte conductivity and radius of the opening in the masking layer is discussed.

Numerical Simulation of the Electrical Double Layer Based on the Poisson-Boltzmann Models for AC Electroosmosis Flows

P. Pham1, M. Howorth1, A. Planat-Chrétien1, and S. Tardu2
1Département des microTechnologies pour la Biologie et la Santé, CEA/LETI, Grenoble, France
2LEGI, Grenoble, France

In this paper, the analytical validation of Poisson-Boltzmann (PB) equation computed with COMSOL Multiphysics in the case of a polarized surface in contact with an electrolyte, is first presented.COMSOL Multiphysics algorithms easily handle the highly nonlinear aspect of the PB equation. The limitations of the PB model, that considers ions as point like charges, are outlined. To account for the ...

Statistical Sensitivity Analysis of Li-ion Pouch Battery Cell Dimension and Design

A. Samba[1], N. Omar[2], H. Gualous[3], Y. Firouz[2], O. Capron[2], M. Abdel MonemO[2], J. Smekens[2], P. Van den Bossche[2], J. Van Mierlo[2]
[1]VUB ETEC, Brussel, Belgium and UCBN, LUSAC, Cherbourg, France
[2]VUB ETEC, Brussel, Belgium
[3]UCBN, LUSAC, Cherbourg, France

Multi-Scale and Multi-Dimensional (MSMD) modeling approaches have been proposed to simulate the thermal, electrical distributions and concentration behaviors of large size pouch cell. This approach is based on coupling of the energy balance with the Newman’s electrode model. Newman’s 1D electrochemical model is often used for small size batteries but not sufficient enough for large size where ...

The Fast Model for Ionic Wind Simulation

A. Samusenko[1], Yu. Stishkov[1], P. Zhidkova[1]
[1]Saint Petersburg State University, Research and Educational Center “Electrophysics”, St Petersburg, Russia

Ionic wind is the gas flow induced by the corona discharge. Ions produced by corona are accelerated by electric field and transfer their momentum to neutral molecules. Using ionic wind one can convert electric energy to kinetic energy of air flow almost directly. The phenomenon of ionic wind finds applications in electrostatic precipitators and ionizers. It is difficult to solve the complete ...

2D Axisymmetric Simulation of the Electrochemical Finishing of Micro Bores by Inverse Jet Electrochemical Machining

M. Hackert-Oschätzchen[1], M. Kowalick[1], G. Meichsner[2], A. Schubert[1], B. Hommel[3], F. Jähn[3], M. Scharrnbeck[4], R. Garn[5], A. Lenk[5]
[1]Professorship Micromanufacturing Technology, Technische Universität Chemnitz, Chemnitz, Germany
[2]Fraunhofer Institute for Machine Tools and Forming Technology, Chemnitz, Germany
[3]SITEC Industrietechnologie GmbH, Chemnitz, Germany
[4]SITEC Automation GmbH, Chemnitz, Germany
[5]Continental Automotive GmbH, Limbach-Oberfrohna, Germany

In this study the inverse Jet-ECM process of micro bores is investigated by help of multiphysics simulations. Based on the micro bore of a commercial sample nozzle a model geometry was derived. For simulating inverse Jet-ECM a transient model has been developed. Electric currents and deformed geometry interface were used. It could be demonstrated, that the maximal removal took place at the edge ...

Design and Simulation of MEMS Based Piezoelectric Vibration Energy Harvesting System

M. C. B. Kumar[1], D. B. Prabhu[1], R. Akila[1], A. Gupta[1], M. Alagappan[1]
[1]PSG College of Technology, Coimbatore, Tamil nadu, India

This paper discusses the simulation studies on a vibration based energy harvesting system to convert the undesirable mechanical vibration to useful green power. The design consists of a resonating proof mass and a spring system enclosed in housing and fixed on the source of vibration. A piezoelectric suspension acts as the transducer and generates a voltage that is used to charge the batteries of ...

Reverse Electrodialysis Process with Seawater and Concentrated Brines: a COMSOL Multiphysics® Model for Equipment Design

M. Tedesco[1], A. Cipollina[1], C. Scavuzzo[1], A. Tamburini[1], G. Micale[1]
[1]Dipartimento di Ingegneria Chimica, Gestionale, Informatica, Meccanica (DICGIM), Università di Palermo (UNIPA), Palermo, Italy

Salinity Gradient Power (SGP) is a promising renewable energy source associated to the controlled mixing of two aqueous solutions of different salinities. Recently, Reverse Electrodialysis process (SGP-RE, or RED) has been identified as a successful way for the exploitation of such energy source, allowing the conversion of SGP directly into electric energy. COMSOL Multiphysics® modelling ...

Modeling Hydrogen Permeation through a Thin TiO2 Film Deposited on Pd

Z. Qin[1], Y. Zeng[1], and D.W. Shoesmith[1]

[1]The University of Western Ontario, London, Ontario, Canada

Models that describe hydrogen permeation through a thin TiO2 film deposited on Pd have been developed based on a mass-balance equation consisting of diffusion, reversible hydrogen absorption/desorption, and irreversible hydrogen trapping. These models are solved by the finite element method using COMSOL Multiphysics. By comparing model simulations with experimental permeation curves, values of ...

Heat Transfer Modelling of Single High Temperature Polymer Electrolyte Fuel Cell (HT PEFC) Using COMSOL Multiphysics®

V. Venkataraman[1]
[1]Centre for Hydrogen & Fuel Cell Research, University of Birmingham, United Kingdom

In this paper a 3D geometry of a single HT PEFC with all the components (membrane, cathode, anode & bipolar plate with flow field) was modelled for heat transfer. The source of heat within the fuel cell is the internal heat generated from electrochemical reactions. Heat source terms used in the model are: Joule Heat - Occurs in membrane and modelled as Volumetric heat source Irreversible ...

Underpaint Corrosion Modelling

T. Machado Amorim, and C. Allély
ArcelorMittal Research and Development, Automotive Products Center, Maizières les Metz, France

Underpaint corrosion is one of the most important degradation modes for galvanized steel sheets employed in automotive and building industry. Simplified systems (metal coated with thin polymer layer) under corrosion situations have been studied in the past few years and it is now widely accepted that one of the mechanisms responsible for the paint disbonding is cathodic delamination. In this ...

Quick Search