See How Multiphysics Simulation Is Used in Research and Development
Engineers, researchers, and scientists across industries use multiphysics simulation to research and develop innovative product designs and processes. Find inspiration in technical papers and presentations they have presented at the COMSOL Conference. Browse the selection below or use the Quick Search tool to find a specific presentation or filter by application area.
View the COMSOL Conference 2024 Collection
Based on experimental data describing the Ca2+ dynamics over a time period of 5 s in non-stimulated T Cells obtained via high-resolution Ca2+ imaging, it was possible to identify the appearance of random spontaneous Ca2+ microdomains inside the Endoplasmic Reticulum (ER) - Plasma ... Read More
Evonetix is a Cambridge-based start-up company working on a revolutionary new technology to synthesize high-fidelity DNA at scale. Our technology is based on a silicon MEMS chip with a large number of reaction sites that facilitate multiple parallel synthesis channels. We operate a ... Read More
Recent simulation-based investigation of Duchenne muscular dystrophy (DMD) pathology revealed that changes in permeability have a large effect on the diffusion signal. DMD is known to cause increased permeability of muscle fibres. We use COMSOL Multiphysics® to investigate the effect of ... Read More
Models generated from 3D image data (such as MRI or CT) are used in COMSOL Multiphysics® to analyse real-world problems and gain insights into biomechanical and industrial processes. We work with customers from different areas, from Life Sciences to Materials Science, to implement ... Read More
Background: TTFields are being investigated for treatment of brain metastasis. Although vasogenic edema is the most common type of associated cerebral edema, other forms of edema might arise within the brain due to prior treatment or other confounding effects. Therefore, we seek to ... Read More
Biodegradable scaffolds are often inserted in the body, to provide mechanical support to recovering broken or damaged tissues. Monitoring the degradation chemistry and mechanical response of these scaffolds is important: their degradation rate should match tissue regeneration rate, while ... Read More
Introduction: Keratin protein biomaterials (KTN) are used in various tissue engineering applications including liquid infusions and gel implants. Random movement of molecular species is characterized by Fick’s laws of diffusion (and velocity-dependent convection) with the ... Read More
In his seminal work, “A Chemical Basis for Morphogenesis,” Alan Turing proposed a mechanism for pattern formation in nature. Turing patterns occur in a broad range of natural systems, from desert vegetation to animal markings. Turing mechanisms have also been implicated in processes ... Read More
Cancer cells have an increased sensitivity to heat compared to healthy cells; at 42°C cancer cells are destroyed while normal cells can survive up to 47°C. Thus hyperthermia-based approaches that target specific spatial locations and simultaneously provide controlled thermal exposure ... Read More
The DOE BETO consortium "ChemCatBio" has developed a packed bed catalyst for use in a Catalytic Fast Pyrolysis (CFP) process for producing biofuels and chemicals from lignocellulosic biomass. Another BETO consortium known as "CCPC" (Consortium for Computational Physics and Chemistry) is ... Read More