Technical Papers and Presentations

Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Simulation of Deep Geothermal Heat Production

E. Holzbecher, P. Oberdorfer, F. Maier, and Y. Jin
Georg-August Universität Göttingen
Göttingen, Germany

Geothermal heat production from deep reservoirs (5000-7000 m) is currently examined, not only in Germany. Our reference set-up consists of two pipes within a single borehole: one for pumping. We examine a design, where a single borehole splits into two legs at a certain depth. The two legs are connected by highly permeable geological, natural or artificial strata in the deep subsurface. The ...

Coupling Heat Transfer in Heat Pipe Arrays with Subsurface Porous Media Flow for Long Time Predictions of Solar Rechargeable Geothermal Systems

P. Oberdorfer[1], R. Hu[1], M. Azizur Rahman[1], E. Holzbecher[1], M. Sauter[1], P. Pärisch[2]
[1]Applied Geology, Geoscience Centre, University of Göttingen, Göttingen, Germany
[2]Institute for Solar Energy Research Hameln/Emmerthal (ISFH), Emmerthal, Germany

An increased share of renewable energies is regarded as an integral part of a strategy towards a sustainable future. With regard to the heat supply sector this may be achieved using solar thermal collectors or heat pump systems with borehole heat exchangers. During the last years solar thermal and geothermal systems have generally been installed separately. Now, several proposals are discussed in ...

Elasto-Plastic FEM Models Explain the Emplacement of Shallow Magma Intrusions in Volcanic Complexes

A. Bistacchi[1]
[1]Università degli Studi di Milano Bicocca, Milano, Italy

We present numerical models and field data that aid understanding of volcano-tectonic processes related to the propagation of inclined sheets and dykes under a stress field resulting from the inflation of a shallow magma chamber. Structural field data from the classical Cuillins cone-sheet complex (Isle of Skye) show that sheets have a constant average dip angle (45°), with pure dilational or ...

Finite Element Solution of Nonlinear Transient Rock Damage with Application in Geomechanics of Oil and Gas Reservoirs

S. Enayatpour[1], T. Patzek[1]
[1]The University of Texas at Austin, Austin, TX, USA

The increasing energy demand calls for advances in technology which translate into more accurate and complex simulations of physical problems. Understanding the rock damage is essential to understanding the geomechanics of hydrocarbon reservoirs. The fragile microstructure of some rocks makes it difficult to predict the propagation of fracture in these rocks, therefore a mathematical model is ...

Modeling Large-Scale Mine Dewatering by Using Subsurface Flow Module in COMSOL Multiphysics

J. Molinero[1], A. Nardi[1], P. Trinchero[1]
[1]Amphos 21, Barcelona, Spain

Groundwater is a key factor affecting mine operations worldwide. On one hand, both underground and open pit mines need to pump out groundwater in order to proceed with mineral extraction and increase the stability of rock slopes. On the other hand, groundwater abstractions can produce undesired environmental and social impacts, which should be anticipated in the environmental impact assessments ...

Simulation of Geomechanical Reservoir Behavior during SAGD Process Using COMSOL Multiphysics®

X. Gong[1], R. Wan[1]
[1]University of Calgary, Calgary, AB, Canada

THM (Thermo-Hydro-Mechanical) behavior of the reservoir during SAGD (Steam-Assistant-Gravity-Drainage) was studied through a proper constitutive modeling of the porous media. Specifically, a generalized density-stress-fabric dependent elasto-plastic model with stress-dilatancy and plastic damage as main ingredients was implemented into COMSOL Multiphysics®, to model geomechanical behavior during ...

Developments in a Coupled Thermal-Hydraulic-Chemical-Geomechanical Model for Soil and Concrete

S.C. Seetharam[1], D. Jacques[1]
[1]Performance Assessments Unit, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre (SCK•CEN), Mol, Belgium

This paper documents current status in the development of a coupled thermal-hydraulic-chemical-geomechanical numerical suite within COMSOL-MATLAB environment to address soil and concrete applications. The mathematical formulations are based on well-established continuum scale models unifying mass conservation, energy conservation, charge conservation, thermodynamic equilibrium and kinetics and ...

Reactive Transport and Convective Mixing During CO2 Migration in a Saline Aquifer

E. Abarca[1], A. Nardi[1], F. Grandia[1], J. Molinero[1]
[1]Amphos21 Consulting, Barcelona, Spain

The capture and storage of CO2 in deep geological formations is one of the proposed solutions to reduce CO2 emissions to the atmosphere. CO2 is injected as a supercritical fluid deep below a confining geological formation that prevents its return to the atmosphere. A configuration of denser CO2-enriched brine overlying lighter water leads to convective flow and the formation of gravity fingers of ...

Applicability of the Fracture Flow Interface to the Analysis of Piping in Granular Material

S. Bersan[1], C. Jommi[2], A. Koelewijn[3], P. Simonini[1]
[1]University of Padua, Padua, Italy
[2]Delft University of Technology, Delft, The Netherlands
[3]Deltares, Delft, The Netherlands

Piping is a kind of internal erosion that occurs under water retaining structures lying on a sandy soil. In an attempt to reproduce the growth of erosion channels in sand, a small scale physical model has been set up in the laboratory and a finite element model that reproduces the physical model has been developed. This paper presents the comparison among modeling strategies, from which emerged ...

Groundwater Modeling as an Assessment Tool for Underground Mines Located in Fractured Massifs

J. Font-Capó[1], A. Nardi[1], M. Mendoza [2], E. Ruiz[2], S. Jordana[1], J. Molinero[1], P. Trinchero[1], J. Vargas[3]
[1]Amphos 21 Consulting, Barcelona, Spain
[2]Amphos 21 Perú, Lima, Perú
[3]Worley Parson/TWP, Lima, Perú

Some of the present metallic ores mines are located in areas formed by a heterogeneous fractured massif where groundwater flows preferentially through fractures. Underground mining in these zones can cause impacts in streams, lakes and change the natural water balance of the watersheds, leading to conflicts between traditional uses of water and the mining activity. Quantification of these ...

Quick Search