Technical Papers and Presentations

Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Multiphysics Modelling of Standing Column Well and Implementation of Heat Pumps Off-Loading Sequence

A. Nguyen[1], P. Pasquier[1], D. Marcotte[1]
[1] Department of Civil, Geological and Mining Engineering, École Polytechnique de Montréal, Montréal, QC, Canada

A fully coupled multiphysics model involving heat transfer and groundwater flow within a SCW and its surrounding ground was implemented in COMSOL Multiphysics 4.2a with MATLAB to simulate a 24-hour heating operation. The heat pumps were modeled using interpolation functions thereby allowing the effect of the pumped water temperature on the capacity and coefficient of performance of the heat pumps ...

Micromechanical Design of Novel Thermal Composites for Temperature Dependent Thermal Conductivity - new

R. C. Thiagarajan[1],
[1]ATOA Scientific Technologies Pvt. Ltd., Bengaluru, Karnataka, India

Materials with an order variable in thermal conductivity as a function of temperature are desirable for thermoelectric heat energy recovery, building thermal insulation and solar thermal applications. Thermal Conductivity is an inherent material property. Engineering the fundamental thermal conductivity needs manipulation at thermal photon level for conventional materials. Engineering thermal ...

Multiphysics Simulation of REMS hot-film Anemometer Under Typical Martian Atmosphere Conditions

L. Kowalski, L.C. Muñoz, M.D. Pumar, and V.J. Serres
Universidad Politécnica de Cataluña, Departamento de Ingeniería Electrónica, Barcelona, Spain

The purpose of this paper is to describe numerical electro-thermal simulations of the REMS wind sensor unit and the results obtained by using COMSOL Multiphysics. This device is a hot-film anemometer for 2D wind measurements, which does not have movable parts and is based on the air stream forced heat convection to the environment. This wind sensor works as a thermo-electrical transducer where ...

Numerical Simulation of Warm-Air Drying of Mexican Softwood (Pinus Pseudostrobus)

S. Sandoval Torres[1], E. Hernández-Bautista[1], J. Rodríguez-Ramírez[1], A. Carrillo Parra[2]
[1]Instituto Politécnico Nacional, CIIDIR, Oaxaca, Mexico
[2]Facultad de Ciencias Forestales, Universidad Autónoma de Nuevo León, Linares, N.L. México

In this work, the numerical simulation of Mexican softwood (Pinus pesudostrobus) drying is presented by solving a physics-based model. The model was developed by considering the heat and mass transport and the representative elementary volume, which involves the solid, liquid and gas phases. We solved a system of partial differential equations by numerical factorization in COMSOL Multiphysics ...

Modelling of the Wool Textile Finishing Processes

M. Giansetti[1], A. Pezzin[1], S. Sicardi[1], G. Rovero[1]
[1]Politecnico di Torino, Torino, Italy

Within wool textile industries, a very important role is played by the so-called finishing processes, in which the textile substrate undergoes steam treatments to achieve the desired level of stabilisation and appearance. Process parameters, namely temperature and moisture content, are known only at the beginning of the process but not in the textile material being treated, where the actual ...

Numerical Evaluation of Long-Term Performance of Borehole Heat Exchanger Fields

A. Priarone[1], S. Lazzari[1], and E. Zanchini[1]

[1]Dipartimento di Ingegneria Energetica, Nucleare e del Controllo Ambientale, Alma Mater Studiorum - Università di Bologna, Bologna, Italy

The long-term performance of double U-tube Borehole Heat Exchangers (BHEs) is studied numerically by considering three different time-dependent heat fluxes exchanged between each BHE and the ground. Since the temperature distribution along the vertical direction has a negligible influence on long-term BHE performance, the problem is studied by means of a 2D conduction model, where the energy ...

Modeling of Shrinkage Behavior in Cement Paste Using Thermal-structural Interaction

T. Chen[1], and P.G. Ifju[1]
[1]University of Florida, Gainesville, Florida, USA

This paper describes using thermal structural interaction to model the shrinkage behavior in cement paste under drying. An inverse method of combining the finite element analysis and the least-squares method is implemented to fit experimentally determined shrinkage in order to obtain material propertiesfrom the complex geometry used in the tests. The finite element model is created in COMSOL ...

Modeling the Heat Treatment of a Starch Suspension inside a Tubular Heat Exchanger

A. Plana-Fattori[1,2], E. Chantoiseau[1,2], C. Doursat[1,2], and D. Flick[1,2]
[1]AgroParisTech, Massy, France
[2]INRA, Massy, France

Many liquid food processes involve coupled phenomena of fluid flow, heat transfer and product transformation. A typical example is the heat treatment of a starch suspension inside a tubular heat exchanger. Fluid flow influences heat transfer which determines temperature evolution along fluid trajectories. Temperature locally influences the food product transformation. The latter influences ...

Modeling System Dynamics in a MEMS-Based Stirling Cooler

D. Guo, A. McGaughey, G. Fedder, M. Lee, and S. Yao
Carnegie Mellon University
Pittsburgh, PA

Micro-scale devices based on the Stirling cycle are an attractive choice for chip- and board-level electronics. A new Stirling cycle micro-refrigeration system composed of arrays of silicon MEMS cooling elements has been designed. COMSOL is used to evaluate the thermal performance of the system. Simulation of compressible flow and heat transfer with a large deformed mesh has been successfully ...

Time-Dependent Thermal Stress and Distortion Analysis During Additive Layer Manufacturing, by Powder Consolidation by Laser Heating

M.S. Yeoman[1], J. Sidhu[2]
[1]1. Continuum Blue Ltd., Tredomen Innovation & Technology Park, Tredomen, Ystrad Mynach, United Kingdom
[2]BAE Systems, Advanced Technology Centre, Bristol, United Kingdom

A time-dependent COMSOL Multiphysics model of an additive manufacture process, which uses powder consolidation by laser heating was developed, providing a platform to better understanding the manufacture process & provide a tool to reduce resulting distortion & optimization of an additive manufacture process. The model simulates a high intense laser energy source moving along a pre-defined time ...

Quick Search