Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Understanding the Magnetic Field Penetration in Mesoscopic Superconductors via COMSOL Multiphysics® Software - new

I. G. de Oliveira[1]
[1]Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, Brazil

Introduction: One of the main characteristic of the superconductors is its diamagnetic response of applied magnetic fields. The superconductors refuse the penetration of magnetic field into its interior, it is the well know Meissner effect, B=0 into the superconductor sample. However when the applied field reach a determined value, the magnetic field can enter. There are two different ways of ...

COMSOL Multiphysics® Simulation Integrated into Genetic Optimization

V. Longinotti[1], S. Di Marco[1], S. Pistilli[1], F. Costa[1], M. Giusti[1], G. Gammariello[1], I. Gison[1], G. Latessa[1,2], D. Mascolo[2], A. Buosciolo[1]
[1]Altran Italia, Roma, Italy
[2]Consorzio DeltaTi Research, Milano, Italy

The main topic of this paper is the development of an innovative tool that can be applied in a wide range of complex problems, to simulate, optimize and improve system design especially when dealing with huge numbers of parameters and constraints. The new methodology is obtained by joining the power of COMSOL Muliphysics® simulation with the modern optimization approach of genetic algorithms. ...

Evaluation of the Shutdown Time of Subsea Pipeline for Oil Transportation - new

D. Maciel[1], N. Bouchonneau[1]
[1]Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil

The maintenance plan or rush-to-repair of a subsea pipeline for oil transport may result in the shutdown of the line, in other words, may stop the flow of fluid. During the shutdown, the temperature of the oil tends to decrease continuously, and the heavy molecules tend to crystallize and suspend in the oil, which increase the viscosity of the oil, and even form a paraffinic compound or freeze ...

Gate Control of Single-Electron Spins in GaAs/AlGaAs Semiconductor Quantum Dot

S. Prabhakar and J. Raynolds
College of NanoScale Science and Engineering, University at Albany, Albany, NY, USA

Non-charge-based logic is the notion that an electron can be trapped and its spin manipulated through application of gate voltages. Numerical simulations of Spin Single Electron Transistors (SSET) at University at Albany, aimed at practical development of post-CMOS concepts and devices is presented. We use COMSOL based multiphysics finite element simulation strategy to solve the Schrö ...

Investigation of Stability of Current Transfer to Thermionic Cathodes

M. Benilov, and M. Faria
Departamento de Física, Universidade da Madeira, Funchal, Portugal

Current transfer from high-pressure arc plasmas to thermionic cathodes may occur in a diffuse mode, when the current is distributed over the front surface of the cathode, or in a spot mode, when most of the current is localized in one or more small areas. Spectra of perturbations of 3D steady-state current transfer to thermionic cathodes of a high-pressure argon arc have been computed in the ...

Universal Dielectric Response of Atmospheric Ice Using COMSOL Multiphysics®

U.N. Mughal[1], M.S. Virk[1], K. Zaman[1]
[1]Narvik University College, Narvik, Norway

Heterogeneous materials with different phases, are conductive and insulating (dielectric), and are physically present in different natural materials as e.g. atmospheric ice. Jonscher’s proposed ‘universal dielectric response’ is not sufficient for such materials, as it only reflects conductivity as a nonlinear function of frequency, whereas at lower temperatures dipolar vibrations are also very ...

High Frequency Resonators Using Exotic Nanomaterials - new

B. Panchapakesan[1], M. Loeian[1]
[1]Department of Mechanical Engineering, Worcester Polytechnic Institute, Worcester, MA, USA

Human made mechanical resonators have been around for a thousand years. Early applications included musical instruments and chronographs operating in millihertz to kilohertz frequencies while more recent interest has turned ultra-high frequency resonators and oscillators suitable for wireless technologies, mass sensing and even biological applications. The trend has been towards small, stiff and ...

Platform Isolation Using Out-of-Plane Complaint Mechanisms - new

A. Arevalo[1], E. Rawashdeh[1], I. G. Foulds[2]
[1]Computer, Electrical & Mathematical Sciences & Engineering Division (CEMSE), King Abdullah University of Science & Technology, Thuwal, Saudi Arabia
[2]School of Engineering, University of British Columbia - Okanagan, Vancouver, BC, Canada

This paper reports the structural solid mechanic simulation of a MEMS out-of-plane platform that provides thermal and electrical isolation for a device built on it. When assemble, the platform lifted for approximately 400 μm above the substrate level. A mechanical stress analysis is then presented in order to evaluate the feasibility of building it using commonly used materials in MEMS. Our ...

Improving Blood Flow Simulations Using Known Data - new

T. Guerra[1], J. Tiago[2]
[1]Escola Superior de Tecnologia do Barreiro do Instituto Politécnico de Setúbal, Barreiro, Portugal
[2]Instituto Superior Técnico da Universidade de Lisboa, Lisboa, Portugal

Numerical simulations applied to blood flow together with the imaging processing advances are a powerful tool in the prevention and treatment of some diseases. The inclusion of real data in the numerical blood flow simulations allows the achievement of more realistic and accurate results. In the literature, these techniques are known as Data Assimilation (DA). We solve a variational DA problem ...

Effect of Interfacial Charge on the Drop Deformation under the Application of Oscillatory Electric Field.

R. Patil[1], and V. A. Juvekar[1]
[1] Department of Chemical Engineering, Indian Institute of Technology Bombay, Maharashtra

Study of interaction of drops and bubbles with electric field is important for understanding the physics involved in various physical phenomenas and industrial processes. Important applications arise in colloidal systems (Miller and Scriven, 1970), meteorology and cloud physics (Sartor, 1969), electrostatic spraying of liquids (Balachandran and Bailey, 1981), power engineering applications ...