Technical Papers and Presentations

Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Electrowetting and Droplet Transport in Digital Microfluidic Chips for Mixing Applications

S. F. Azam[1]
[1]IIT Hyderabad, Hyderabad, Telangana, India

Over the last decade, electrowetting-on-dielectric (EWOD) has become one of the most blistering and versatile tool in digital microfluidics. It enables control over fluid shape and flow by electrical signals alone, which is viable by effective utilization of the excess charge accumulation at the interface between the droplet and the dielectric surface, also by polarization of line tension at the ...

Finite Element Modeling of Dielectric-Paraelectric Composite Materials

K. Zhou, S. Alpay, and S. Boggs
Institute of Material Science, University of Connecticut, Storrs, CT, USA

Finite Element analysis is used to model 2-D and 3-D paraelectric-dielectric composites (BaTiO3 spherical fillers randomly distributed in constant dielectric matrix). The effective dielectric response and tunability are studied under different filler sizes and different volume fractions. The results are consistent with previous theoretical and experimental results: with the increasing of filler ...

Magnetoacoustic Tomography and COMSOL Multiphysics

W. He
Chinese Academy of Sciences, Institute of Electrical Engineering, Beijing, China

Magnetoacoustic tomography with magnetic induction (MAT-MI) is a recently introduced method for imaging electrical impedance properties, which integrates classic electrical impedance tomography and ultrasonic technique. It could provide an explicitly reconstructed electrical impedance distribution with high spatial resolution and contrast, eliminating the shielding effects of insulating tissues. ...

Modeling of Chemo-Mechanical Coupled Behavior of Cement Based Material

D. Hu[1], F. Zhang[2], H. Zhou[3], and J. Shao[1]
[1]LML, UMR8107, CNRS, University of Lille I, Lille, France
[2]School of Civil Engineering and Architecture, Hubei University of Technology, Wuhan, China
[3]State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan, China

A lixiviation-mechanical coupled model is developed for fiber reinforced concrete within this framework; both the influence of chemical degradation on short and long term mechanical behavior and the influence of mechanical loading on the diffusion coefficient can be considered. The elastic mechanical properties are written as function of chemical damage. A Drucker–Prager typed criterion with ...

Study of Hard-and Soft- Magnetorheological Elastomers (MRE’s) Actuation Capabilities

J. Roche[1], P. Von Lockette[1], and S. Lofland[2]
[1]Mechanical Engineering Dept., Rowan University, Glassboro, NJ
[2]Physics and Astronomy Dept., Rowan University, Glassboro, NJ

In this study, magneto-rheological elastomer (MRE) composite beams made of Barium hexaferrite (BaM) and Iron (Fe) powders combined with a highly-compliant matrix material were simulated using COMSOL\'s Solid Mechanics and AC/DC modules. The goal of the work was to develop models capable of predicting the actuation behavior of hard- and soft-magnetic MREs. This work simulates the bending of the ...

Densification and Shape Change of Calcined High Level Waste During Hot-Isostatic Pressing

T. Burnett, and D. Lower
CH2M-WG Idaho, LLC
The Idaho Cleanup Project at the Idaho National Laboratory
Idaho Falls, ID

Hot Isostatic Pressing (HIP) has been selected as a means of treating calcined high level waste (HLW). The process combines high temperature and pressure to densify the HLW in to a mineral similar to the geologic formulation of granite. This study uses COMSOL to predict densification and shape deformation of a stainless steel can filled with HLW. Two approaches were used to model densification ...

Design of a Microreactor for Microwave Organic Synthesis through Microwave Heating Simulations

W. H. Lee[1], K. Jensen[1]
[1]Massachusetts Institute of Technology, Cambridge, MA, USA

We will present the issues of a microreactor setup designed for microwave organic synthesis and demonstrate how COMSOL Multiphysics® is used to understand the mechanism of microwave heating and improve the microreactor design. The RF Module was used for the electromagnetics and solid heat transfer simulations of a CEM Discover microwave unit, while the Heat Transfer and CFD Modules were used the ...

Chromatographic Separation of Tröger’s Base in a Batch Column

A. Fayolas [1], M.G. Sanku[1], M. Pascoa[1], M. Xynou[1]
[1]KTH Royal Institute of Technology, Stockholm, Sweden

The objective of the study is to investigate the chiral separation of Tröger’s base enantiomers using batch chromatography. Because of its resolution, chromatography is often the preferred method for chiral separations. The separation of Tröger’s base is resolved by using the COMSOL Multiphysics® software. It is modeled by one dimension geometry, having the length of the column set and ...

Two-dimensional Analysis of Triple Coupled Physics of Structural Mechanics, Diffusion and Heat Transfer in a Gas Pipe

P. Lee-Sullivan[1], and M. Haghighi-Yazdi[1]
[1]Department of Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, Ontario, Canada

In this study, a 2-D model has been built using COMSOL Multiphysics® to analyze a triple coupled physics problem involving simultaneous gas diffusion, heat transfer, and structural mechanics in a pipe due to the flow of high-pressure carbon dioxide. The problem geometry and boundary conditions were based on the analysis by Rambert et al. who have published the most advanced modeling work in ...

Surface Aeration System Modeling using COMSOL

G. Selembo, P. Selembo, J. Stanton, and G. Paulsen
University of North Carolina
Charlotte, NC

Surface aeration systems are used in the wastewater treatment industry for the transfer of oxygen in the activated sludge process. These systems are capital intensive and also require a significant amount of energy to operate. Scale-up and design of these systems is largely empirical, and due to the size of these systems, modifications for experimental testing can be economically prohibitive. ...

Quick Search