Technical Papers and Presentations

Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

High Frequency Magnetohydrodynamic Calculations in COMSOL

N. Kleinknecht, and S. A. Halvorsen
Teknova AS
Kristiansand, Norway

In many metallurgical processes metals are (heated and) stirred by an oscillating external magnetic field. The magnetic field induces electric currents in the metal and the currents interact with the magnetic field to create a force, the Lorentz force. For high frequencies induction only takes place in an electromagnetic boundary layer due to the skin effect and the force is confined within this ...

An Analysis of Spin-Diffusion Dominated Ferrofluid Spin-Up Flows in Uniform Rotating Magnetic Fields

S. Khushrushahi[1], A. Guerrero[2], C. Rinaldi[3], and M. Zahn[1]
[1]Massachusetts Institute of Technology, Cambridge, MA
[2]Univeridad Industrial de Santander, Bucaramanga, Colombia
[3]University of Puerto Rico, Mayaguez, Mayaguez, PR

This work analyzes the spin-diffusion dominated explanation for spin-up bulk flows in ferrofluid filled cylinders, with no free surface, subjected to a uniform rotating magnetic field. COMSOL results are compared to experimental results and analytical results. Simulating ferrofluid spin-up flows have many subtleties, especially when using a single domain region to model the ferrofluid cylinder ...

Electromagnetic and Coupled Field Computations: A Perspective

S. V. Kulkarni
Indian Institute of Technology
Bombay, India

S. V. Kulkarni a Professor in Electrical Engineering Department, Indian Institute of Technology, Bombay, India. Previously, he worked at Crompton Greaves Limited and specialized in the design and development of transformers up to 400 kV class. He has authored book \"Transformer Engineering: Design and Practice\" published by Marcel Dekker, Taylor & Francis Group. The author of more than 120 ...

Use of Simulation in the Development of Next-generation Measurement Standards for Radiation Dosimetry

R. E. Tosh[1], H. Chen-Mayer[1]
[1]NIST, Gaithersburg, MD, USA

Calibration of field instruments used in radiation treatment clinics is currently traceable to NIST primary standards via protocols involving static, flat-field radiation beams. By contrast, radiation beams prescribed for treating cancer incorporate temporal and spatial modulation strategies in order to maximize dose to the tumor while sparing healthy tissue. Differences in the detector ...

Simulation of Radiation Dose from Diagnostic X-ray Beams

H. Chen-Mayer[1], R. E. Tosh[1]
[1]NIST, Gaithersburg, MD, USA

Direct realization of absorbed dose to water in diagnostic radiation via calorimetric methods poses many challenges since the thermal signal of interest may be less than a few microKelvin. In actual biological systems or structures, like the lung, there is the additional complication of tissue heterogeneity, which introduces a quasi-random component to the dose distribution, hence to thermal ...

Strong Localization and Rapid Time Scales of Superheating in Solid-State Nanopores

E. Levine[1], G. Nagashima[1], D. Hoogerheide[1], M. Burns[2], J. Golovchenko[1]
[1]Harvard University, Cambridge, MA, USA
[2]Rowland Institute at Harvard University, Cambridge, MA, USA

Extreme localized superheating and homogeneous vapor bubble nucleation have recently been demonstrated in a single nanopore in thin, solid state membranes [1]. Aqueous electrolytic solution present within the pore is superheated to well above its boiling point by Joule heating from ionic current driven through the pore. Continued heating of the metastable liquid can eventually lead to explosive ...

Multiphysics Simulation of Polymer-Based Filters for Sub-Millimeter Space Optics

N. Baccichet[1], G. Savini[1]
[1]Department of Physics and Astronomy, University College London, London, UK

Multiphysics Simulation of Polymer-Based Filters for Sub-Millimeter Space Optics This work focuses its analysis on polymer-based filters used in space-borne astronomical instrumentation for Cosmic Microwave Background Radiation and Far-Infrared observations. Most of these observatories mount quasi-optical elements made of such materials, due to their high transparency and low absorption in ...

COMSOL Multiphysics® Simulation of Energy Conversion and Storage Concepts Based on Oxide Crystals

C. Cherkouk[1], M. Zschornak[1], J. Hanzig[1], M. Nentwich[1], F. Meutzner[1], M. Urena[1], T. Leisegang[2], D. C. Meyer[1]
[1]Institute of Experimental Physics, Technische Universität Bergakademie, Freiberg, Germany
[2]Fraunhofer-Technologiezentrum, Freiberg, Germany

A mathematical model based on a finite element method (FEM) is presented as an initial approach for a system converting waste heat energy into chemical energy. This system consists of a pyroelectric LiNbO3 plate placed into a cylinder which undergoes a laminar water flow with an appropriate periodic heat source. It solves the heat transfer equation in non-isothermal flow, where the density of ...

On the Influence of Cancellous Bone Structure upon the Electric Field Distribution of Electrostimulative Implants

U. Zimmermann[1], R.Bader[2], U. van Rienen[1]
[1]Institute of General Electrical Engineering, University of Rostock, Rostock, Germany
[2]Department of Orthopaedics, University Medicine Rostock, Rostock, Germany

Since the 1980s, the accelerating effect of electromagnetic fields on bone regeneration is used to treat complicated fractures and bone diseases. At the University of Rostock, an electrostimulative hip revision system is developed, basing on the method of Kraus-Lechner. This method requires an electric fields between 5 and 70 V/m. The bone used for the simulations consisted of two homogenous ...

Rheological and Topographical Controls on Deformation Due to a Shallow Magma Reservoir

J. H. Johnson[1]
[1]University of Bristol School of Earth Sciences, Bristol, UK

The use of high-resolution topography in the finite element model demonstrates that deformation from a shallow pressure source can be dramatically affected by overlying relief, not only in magnitude, but also in azimuth. This result is significant as it allows traditionally anomalous data to be evenly weighted during inversions for magma reservoir parameters. The result that surface ...

Quick Search