See How Modeling and Simulation Is Used Across Industries
Multiphysics modeling and simulation drives innovation across industries and academia — as is evidenced by the many uses showcased in the technical papers and posters presented by engineers, researchers, and scientists at the COMSOL Conference each year.
Draw inspiration from the recent proceedings collected below, or, to find a specific presentation or filter by application area or conference year/location, use the Quick Search tool.
View the COMSOL Conference 2025 Collection
The experience of the eruption in Montserrat in 1997 has shown that the resistance of openings of buildings represents a crucial factor in the evaluation of vulnerability to the stresses caused by pyroclastic flows, although the static nature of the building itself is not compromised. ... Read More
To achieve the goals of the Paris Agreement and limit global warming below 2 K compared to pre-industrial level, significant energy savings in all fields of industries will be required. One example of energy intensive processes in industrial fabrication is heat treatment. The applied ... Read More
Microfluidics and Biosensors are two principal fields that paved the way for the inception of Lab-on-a-chip (LOC) which provides early and cost-effective disease detection, from monitoring to treatment. LOC is a device that uses very small amounts of fluid on a microchip to do certain ... Read More
In this conference we have brought together a community that is scientifically diverse in an event that allows for inspiring contacts about the use of COMSOL Multiphysics. It is an event to connect with the Spanish and Portuguese COMSOL Multiphysics users and participate in training ... Read More
Over the past 10 years, scientific, technical, and technological advancements have significantly propelled the integration of artificial intelligence and machine learning technologies within the field of physics, particularly in numerical simulations and the design of autonomous and ... Read More
Flexible and semi-rigid polyurethane foams are widely used as noise and vibration damping materials. Their porous random microstructure is composed of a visco-elastic frame structure with an interstitial fluid, normally air, filling the voids. The viscoelasticity of the foams is due to ... Read More
The Bridgman process is used in the production of single crystal superalloys for use in high temperature applications. The mechanical properties of these superalloys are strongly influenced by the microstructure that is formed during the solidification. The formation of the ... Read More
In the sphere of pasta drying, where accurate prediction of temperature and moisture distribution is crucial, the application of modeling and simulation emerges as highly significant. This work focuses on the development of a physical-mathematical model capable of estimating the space ... Read More
In power electronics applications, microelectronic chips face swift temperature changes during operation, characterized by heat pulses of sub-millisecond duration with temperatures rising by hundreds of Kelvin. Over time, these conditions may lead to degradation in the metallization ... Read More
COMSOL® models of basal body deformation using the Beam Interface are compared to electron tomograms of Tetrahymena thermophila basal bodies high-pressure frozen while undergoing beating deformation. This approach provides insight into the nanoscale structures and internal forces ... Read More
