See How Multiphysics Simulation Is Used in Research and Development
Engineers, researchers, and scientists across industries use multiphysics simulation to research and develop innovative product designs and processes. Find inspiration in technical papers and presentations they have presented at the COMSOL Conference. Browse the selection below or use the Quick Search tool to find a specific presentation or filter by application area.
View the COMSOL Conference 2024 Collection
Acoustic standing waves can be used to manipulate micrometer sized particles, cells and organisms. In most applications these objects are driven towards pressure nodal lines, predominantly by the primary acoustic radiation force. Interestingly, at intermediate particle concentrations, ... Read More
Vortex ring can be useful to generate thrust force for e.g., jellyfish, but its mechanism has not been clarified. In this field, it seems that numerical simulation has an important role of understanding the propulsion mechanism of creature. A vortex ring in a tube, refered to confined ... Read More
Bloch waves in infinite periodic structures – much in vogue in the present metamaterial age – can be conveniently studied by COMSOL Multiphysics® software. This is demonstrated by a simple, yet rich two-dimensional example: a perforated sheet with square symmetry. Instead of plane waves ... Read More
This paper presents a three-dimensional fluid model for a low-power microwave-excited argon microstrip plasma source operated at 2.45 GHz. The gas pressures in the gas channel are 50 and 100 Torr and the input power is 2 W. Simulations are performed by the Plasma Module of COMSOL ... Read More
We have developed a small environmental chamber to expose a sample to adjustable climate conditions. This climate chamber will be used as sample environment for small-angle neutron scattering (SANS) experiments. SANS is a favorable measuring method, to explore structural changes on the ... Read More
为了不断地增加磁存储密度,机械硬盘中磁头和盘片之间的间隙,即飞高,已经减小到了 10nm 以下,以比特磁记录技术(BPM)和热辅助磁记录技术(HAMR)为代表的新兴技术不断涌现,给磁头磁盘界面的超薄气体润滑特性研究提出了新的挑战。 COMSOL Multiphysics® 的使用:由于在超薄气体润滑领域,连续介质模型已经不再适用,控制方程为玻尔兹曼方程。本文以 F-K 模型为控制方程,此模型是在线性玻尔兹曼方程和 BGK 方程基础上结合流量连续条件建立的修正雷诺方程。我们使用了 COMSOL Multiphysics® 中的 PDE 接口进行了自定义修正雷诺方程的建模 ... Read More
This work investigates the possibility of thermal activation of future tunnels to heat and/or cool the surface buildings or infrastructure such as subways stations. The principle is to insert pipes in the tunnel lining segments, which are connected to a geothermal pump. A heat transfer ... Read More
Three dimensional mathematical models are developed to simulate the blood flows in patient specific right coronary arteries with two stenoses. Simulations are carried out with various flow parameters under physiological conditions. Both Newtonian and non-Newtonian blood viscosity models ... Read More
Introduction: In inductively coupled plasma (ICP) systems the inductive antenna is coupled to the excited plasma inside the low pressure gas reactor. A multi-ICP system can be used for increased area processing and provide additional variables for controlling the plasma. However, ... Read More
A frequency-domain finite element (FE) technique for computing the acoustic scattering from axially symmetric fluid-loaded structures subject to a nonsymmetric forcing field based on Ref. 1 is extended to poroelastic media and implemented in COMSOL Multiphysics® software. This method ... Read More