See How Multiphysics Simulation Is Used in Research and Development
Engineers, researchers, and scientists across industries use multiphysics simulation to research and develop innovative product designs and processes. Find inspiration in technical papers and presentations they have presented at the COMSOL Conference. Browse the selection below or use the Quick Search tool to find a specific presentation or filter by application area.
View the COMSOL Conference 2024 Collection
A 3D (three-dimensional) model of a vanadium redox flow battery (VRFB) with interdigitated flow channel design is proposed to study the distributions of fluid pressure, electric potential, current density and over-potential during operation. The performance of a VRFB with and without ... Read More
This presentation summarizes the digital twin (DT) concept and how it can be implemented in COMSOL Multiphysics®. Concepts such as real and virtual spaces, high-fidelity models, and lightweight models are explained in the context of DTs. Read More
In general battery cells are charged/discharged using constant current or constant power expressed as C-Rates and P-Rates respectively. We are developing a single cell-level Li-Ion battery model in order to simulate the performance and the physicochemical phenomena under power ... Read More
在所有电池系统中,锂氧电池的理论比能量最高,而实际比能量却明显不足。阻碍氧和/或电子传递导致多孔空气电极的有限利用,而实现对电化学和质量传递耦合的定量理解是具有挑战性的。本文首创了一种具有高度一致和可控通道单元的多孔电极,该电极排除了无序孔隙的随机性,从而能够研究控制机制。通过comsol建立了一个动态非均质模型,提供了LiO2的第一个时空分布,揭示了其在有限电子输运下的反向扩散轨迹。实验和模型的协同结合确定了通道尺寸在分为质量,杂交和电子传递控制的机制中的关键作用。对于大孔隙来说,提高Li2O2的导电性和减轻固液界面损伤比增强氧的扩散更为迫切 ... Read More
The COMSOL Application Builder can tie a custom user interface to application-specific Java code. This functionality can be used to automatically coordinate changing model characteristics across multiple model nodes. A simple user interface can therefore allow simultaneous ... Read More
The purpose of this work is to show whether an important difference in Lithium solid concentration and electrolyte concentration can be observed in a Lithium-ion battery model, when considering either the Butler-Volmer kinetics or the Tafel kinetics for describing the electrode kinetics ... Read More
Vibration-based Piezoelectric Energy harvesters convert ambient vibration energy into an applicable electrical charge for wireless sensors, IoT applications, and charging the battery, which is most important to range improvement of the Electric Vehicle. This study analyses different ... Read More
Dr. Bernardi is a Research Engineer with Ford Motor Company in Dearborn, MI. Her research focuses on the analysis and simulation of electrochemical energy-storage and conversion systems. In particular, Dr. Bernardi develops mathematical models that predict system behavior and identify ... Read More
The adoption of micro- and nanostructured electrodes is a promising technique to improve the performance of Li-ion battery, which increases the electrode surface area and improves the efficiency of ion exchange between the electrode and electrolyte. This performance improvement is ... Read More
Sustainable wastewater management has stimulated the exploration of innovative technologies, such as electrochemical nutrient recovery, which promises efficient recovery and reuse of vital nutrients, reducing environmental impacts and resource wastage. This study presents the modeling of ... Read More