Technical Papers and Presentations

Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

FEM Based Design and Simulation Tool for MRI Birdcage Coils Including Eigenfrequency Analysis

N. Gurler[1], Y. Ziya Ider[1]
[1]Department of Electrical and Electronics Engineering, Bilkent University, Ankara, Turkey

Designing a Radio Frequency (RF) birdcage coil used in Magnetic Resonance Imaging (MRI) at high frequencies where the wavelength is comparable with the coil dimensions is a challenging task. Before construction of the coil, not only calculating the capacitance value which is necessary for the coil to resonate at the desired frequency but also geometrically modeling the coil in a 3D simulation ...

Simulation of Light Coupling Reciprocity for a Photonic Grating

V. Kivijärvi[1], M. Erdmanis[1], I. Tittonen[1]
[1]Aalto University, Department of Micro- and Nanosciences, Espoo, Finland

SOI (Silicon on Insulator) technology utilizes silicon components on SiO2 layer. Propagating electric field distribution in a SOI waveguide is called mode of the waveguide. Photonic gratings are formed by etching grooves on the top of a waveguide. Gratings can operate in two directions. They can guide incident beam into a waveguide or a waveguide mode out of the structure. We study the grating ...

Key-Holes Magnetron Design and Multiphysics Simulation

A. Leggieri[1], F. Di Paolo[1], D. Passi[1]
[1]Univeristy of Rome "Tor Vergata" - Department of Electronic Engineering, Rome, Italy

This paper describes the design and characterization of an 8 slots resonant cavity Magnetron, which undergoes thermal-structural effects due to cathode heating. The proposed study involves Thermal Stress, Eigen-frequency and Particle Tracing analysis based on COMSOL Multiphysics®. Magnetrons are well known and often utilized High Power Radiofrequency Vacuum Tube oscillators. In order to ...

Coupled RF Thermal Analysis of High Power Couplers for Accelerator Cavities

R. Kumar[1], P. Singh[1]
[1]Bhabha Atomic Research Center, Trombay, Mumbai, India

High-power couplers working at 350 MHz for particle accelerator cavities are presently under development in the LEHIPA project at BARC. It is important to analyze RF losses on conducting surfaces and resulting thermal profiles. COMSOL Multiphysics® is used to study these coupled RF-thermal effects and estimate cooling requirements for these couplers. The RF loss on the copper conductors and ...

Frequency Response Modeling of Inductive Position Sensor with Finite Element Tools - new

A. K. Palit[1]
[1]LE GmbH, Espelkamp, Germany

Position sensors have several applications in the automotive sector. Some of the common examples include automatic gear shifter module, seat position adjustment and accelerator-pedal position modules etc. Because of extreme weather condition, such as dust, humidity and moisture and fluctuation of temperature and wide operating temperature range. A non-contact type of inductive position sensor has ...

Modeling of the Photo-Mechanical Response of Liquid-Crystal Elastomers

G. Cerretti[1], J.-C. Gomez-Lavocat[1][2], K. Vynck[1], D.S. Wiersma[1][3]
[1]European Laboratory for Non-Linear Spectroscopy (LENS), University of Florence, Sesto Fiorentino, Italy
[2]The Institute of Photonic Sciences (ICFO), Mediterranean Technology Park, Castelldefels, Spain
[3]Istituto Nazionale di Ottica (INO), National Research Council (CNR), Florence, Italy

Liquid-crystal elastomers (LCEs) [1] have attracted a great attention in recent years due to their high potential in a wide range of applications, from microfluidics components [2] to artificial muscles [3]. The photo-mechanical response of LCEs is due to their constitutive photo-sensitive molecules, which change shape when absorbing part of the incident light. These microscopic deformations can ...

Scan Angle Stability of a Second-Order Plasma-Switched Frequency Selective Surface

L. W. Cross[1], M. J. Almalkawi[2]
[1]Imaging Systems Technology, Toledo, OH, USA
[2]EECS Department, College of Engineering, University of Toledo, Toledo, OH, USA

Large-area, light-weight electromagnetic protection (EP) structures are needed to protect sensitive microwave sensors and communications systems from high-power microwave (HPM) and electromagnetic pulse (EMP) threats. This paper presents the use of COMSOL Multiphysics® for electromagnetic simulation of a plasma-based frequency selective surface (FSS) structure that can provide significant ...

Impedance Matching of Tag Antenna to Maximise RFID Read Ranges & Optimising a Tag Antenna Design for a Particular Application - new

M. Yeoman[1], M. O'Neill[2]
[1]Continuum Blue Ltd., Ystrad Mynach, UK
[2]Tumbling Dice Ltd., Newcastle, UK

RFID tags are ever increasing in their daily use, from the monitoring of components, the tracking of produce during processing & production, as well as being used in much of the touch-less technologies seen today. With this technology, there has been the ever increasing need to reduce the power required to activate the RFID tag, while maximizing the read range in certain applications. In addition ...

Elektromagnetische Wellen in der EMV Messtechnik

M. Koch, and S. Battermann
Leibniz Universität Hannover, Institut für Grundlagen der Elektrotechnik und Messtechnik

In diesem Beitrag werden die wichtigsten Feldtesteinrichtungen aus dem Bereich der elektromagnetischen Verträglichkeit vorgestellt. Ausgehend von den Anforderungen, die verschiedene Normen an die Feldqualität stellen, werden auftretende Probleme aufgezeigt. Mit numerischen Verfahren wird die Eignung für EMV-Messungen untersucht und anhand der Simulationsergebnisse werden die ...

A Design-of-Experiments Approach to FEM Uncertainty Analysis for Optimizing Magnetic Resonance Imaging RF Coil Design - new

J. T. Fong[1], N. A. Heckert[1], J. J. Filliben[1], L. Ma[1], K. F. Stupic[2], K. E. Keenan[2], S. E. Russek[2]
[1]National Institute of Standards & Technology, Gaithersburg, MD, USA
[2]National Institute of Standards & Technology, Boulder, CO, USA

The design of a magnetic resonance imaging (MRI) RF coil using finite element method-based analysis is an essential part of a multi-year research project at the National Institute of Standards and Technology, Gaithersburg, Maryland, where the goal of the project is to develop a “phantom” for calibrating MRI machines that is traceable to standardized values. Traceable MRI calibrations are ...

Quick Search