Technical Papers and Presentations

Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

FEM Characterization of Terahertz Wave on Metal Wire Waveguides

Deibel, J.A., Wang, K., Escarra, M.D., Mittleman, D.M.
Department of Electrical and Computer Engineering, Rice University, Houston, TX, USA

The terahertz (THz) region of the electromagnetic spectrum (100 GHz to 10 THz) remained relatively unexplored until developments in ultrafast laser technology provided techniques for the generation and detection of THz radiation. Recently, simple metal wires were found to be effective terahertz waveguides that exhibited very low loss and dispersion. The THz radiation propagates along the surface ...

Finite-element Analysis of Properties in Real and Idealized Photonic Crystal Fibres, Application to Supercontinuum Generation

Gérôme, F., Viale, P., Tombelaine, V., Leproux, P., Auguste, J.L., Février, S., Blondy, J.M., Couderc, V.
IRCOM, CNRS UMR 6615, Limoges, France

Using a full-vector finite-element method, we calculate modal properties in index-guiding photonic crystal fibres. The influence of the deformation of the geometry in actual fibre structures is evaluated and compared to the idealized-model. These results are applied to the supercontinuum generation. Moreover, development of MATLAB softwares for FEMLAB 3.1 are presented.

Multiphysics Design of ESS-Bilbao Linac Accelerating Cavities Using COMSOL

J. L. Munoz, and I. Rodriguez
ESS-Bilbao
Bilbao, Spain

A proton linac drives particles using the electric field of a high power RF standing wave in a resonant cavity. The design of these cavities involve several aspects of multiphysics simulation, that have been accomplished using COMSOL. The first step consist on the geometric optimization of the cavities in order to have the correct frequency while maximizing some figures of merit. This task ...

Analysis of Microwave Radiation for Heating

J. Crompton, S. Yushanov, L. Gritter, and K. Koppenhoefer
AltaSim Technologies, LLC.
Columbus, OH

Microwave heating is an important process for many commercial, industrial and household applications. In microwave heating applications, the energy is introduced directly into the volume of the material. As a consequence the quality of the process is highly dependent on the uniformity of the electromagnetic field distribution. Thus, developing a uniform electromagnetic field inside the ...

Superconducting RF Cavity Performance Degradation after Quenching in Static Magnetic Field

I. Terechkine[1], T. Khabiboulline[1], D. Sergatskov[1]
[1]Fermi National Accelerator Laboratory, Batavia, IL, USA

Performance degradation of a superconducting RF cavity after quenching in an external magnetic field was calculated using COMSOL. This degradation is due to the increased resistance of a superconducting surface with trapped magnetic flux. The amount of the trapped flux depends on the size of the normally-conducting opening that develops in the superconducting wall of a cavity during quenching. ...

Determination of the Optical Properties of Individual Gold Nanorods through Numerical Modeling and Experiment

Y. Davletshin[1], J.C. Kumaradas[1]
[1]Ryerson University, Toronto, ON, Canada

The optical scattering and absorption of gold nanorods (GNRs) depends on its size, shape, and surroundings. This dependence is due to both intrinsic and extrinsic effects. A good understanding of this dependence is needed for applications of GNRs in photo-thermal therapy, optical and opto-acoustic imaging, biosensing, and other photonic areas. Extrinsic effects are caused by the production of ...

Thermal Analysis of Metamaterial for High Energy Microwave (HEM) Devices

Vaishali Rawat[1], Sougata Chatterjee[2], Shantanu Das[3], S.N.Kale[1]
[1]Defense Institute of Advanced Technology, Pune, India
[2]Giant Metrewave Radio Telescope,Tata Institute of Fundamental Research,Pune, India
[3]Reactor Control Division, B.A.R.C., & Adjunct Faculty, DIAT, Pune, India

Metamaterial [1, 2] is an artificially structured material where it’s electrical (ϵ), magnetic (μ) and its refraction properties (n) are simultaneously negative in narrow frequency band. Currently, metamaterials are being widely used in microwave and radio frequencies as devices [3, 4] like filter, coupler, antenna etc. However, the applicability of metamaterial as High Energy Microwave (HEM) ...

Microwave Interstitial Tumor Ablation: New Modality for Treatment of Liver Cancer

S. Maini[1] , A. Marwaha[1] , and S. Marwaha[1]

[1] Department of Electrical & Instrumentation Engineering, SLIET , Longowal (Deemed University), Punjab

Hyperthermia is newly back in the interest of both, clinical and research oncologists, because of its properties to directly produce permanent damages of the treated tumors and to elicit important immunological responses against cancer cells by changing their immunogenicity.  Microwave ablation is used in the treatment of primary and secondary tumors of the liver.  Microwave antennas ...

Interactions Between the RF-field and a Stereotactic Frame during MRI, a 3D Study

Eriksson, O., Kjäll, P.
University of Uppsala, Sweden

Stereotactic frames are used during surgical interventions in order to localise and, with high accuracy and precision, help the surgeon to reach a target in the brain. By using an image modality, e.g. MRI or CT, the target can be localised and its coordinates determined prior to the surgery. Previous phenomenological and experimental studies of the Leksell® Coordinate Frame during 3T MRI ...

Confinement Loss Computations in Photonic Crystal Fibres using a Novel Perfectly Matched Layer Design

Viale, P., Février, S., Gérôme, F., Vilard, H.
IRCOM, CNRS UMR 6615, Limoges, France

To modelize infinite photonic crystal fibre (PCF) with 2D-finite-geometry mode solver, it is necessary to use a perfectly matched layer (PML). We have performed a new type of PML design to simulate propagation in PCFs. The results obtained with index-guiding PCFs are in very good agreement with previous theoretical published results. Our PML is quickly optimized. The link between MATLAB and ...

Quick Search