Technical Papers and Presentations

Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Design of a Stealth Antenna Using COMSOL Multiphysics

F. De Vita[1], S. Di Marco[1], F. Costa[1], P. Turchi[1]
[1]Altran Italia, Pisa, Italy

This paper will describe some applications of COMSOL Multiphysics to the analysis of Frequency Selective Surface (FSS) structures. Particular attention will be devoted to the possibility of designing a stealthy antenna using the FSS structure. In fact, since it possesses a dual filter concept of frequency and polarization for electromagnetic wave, the Radar Cross Section (RCS) of the antenna is ...

Self-Consistent Modeling of Thin Conducting Wires and Their Interaction with the Surrounding Electromagnetic Field

G. Eriksson[1]
[1]ABB AB, Corporate Research, Västerås, Sweden

It is demonstrated how the RF Module of COMSOL Multiphysics® can be used to approximately model thin conducting wires or cables and how they interact with a surrounding electromagnetic field. Despite being non-stringent the method can reasonably well predict currents induced by an applied electromagnetic field in wires, and networks of wires, as well as fields radiated from current-carrying ...

Coupled Electromagnetic and Heat Transfer Simulations for RF Applicator Design for Efficient Heating of Materials

C. Thiagarajan[1], J. Anto[2]
[1]ATOA Scientific Technologies Pvt Ltd, Whitefield, Bangalore, Karnataka India.
[2]Researcher

Conventional heating of material wastes energy during heating due to inherent radiation, conduction and convection based heating mechanism. Alternate efficient heating methods are actively researched for improved efficiency. Radio frequency based electromagnetic heating is increasingly used for efficient heating in place of conventional heating. This requires coupling of electromagnetic and heat ...

Simulation of Light Coupling Reciprocity for a Photonic Grating

V. Kivijärvi[1], M. Erdmanis[1], I. Tittonen[1]
[1]Aalto University, Department of Micro- and Nanosciences, Espoo, Finland

SOI (Silicon on Insulator) technology utilizes silicon components on SiO2 layer. Propagating electric field distribution in a SOI waveguide is called mode of the waveguide. Photonic gratings are formed by etching grooves on the top of a waveguide. Gratings can operate in two directions. They can guide incident beam into a waveguide or a waveguide mode out of the structure. We study the grating ...

Influence of the Excitation Frequency Increase up to 140 MHz on the VHF-PECVD Technology

S. Leszczynski[1], B. Leszczynska[1], M. Albert[1], J.W. Bartha[1], U. Stephan[2], J. Kuske[2]
[1]Dresden University of Technology, Semiconductor and Microsystems Technology Laboratory, Dresden, Germany
[2]Forschungs- und Applikationslabor Plasmatechnik GmbH, Dresden, Germany

The plasma enhanced chemical vapor deposition process with a linear plasma source and the frequency range up to 140 MHz developed by Dresden University of Technology and FAP GmbH Dresden enables a fabrication of thin film silicon layers at very high deposition rates. However, an increase of the plasma frequency reduces the electromagnetic wavelength. Therefore, the electric field distribution is ...

Modeling Electrical and Thermal Conductivities of Biological Tissue in Radiofrequency Ablation

M. Trujillo[1], E. Berjano[1]
[1]Universidad Politécnica de Valencia, Valencia, Spain

Radiofrequency ablation is a minimally invasive techinique which is used to treat some kinds of cancer. The realism of theoretical models is very important. An influential factor in this realism is mathematical functions that model the temperature-dependence of tissue thermal and electrical conductivities. The aim of this work is to review the mathematical functions employed to model the ...

Designing and Simulating THz Guided Wave Devices Using Finite Element Techniques

L. M. Hayden[1], D. A. Sweigart[1]
[1]Department of Physics, University of Maryland Baltimore County, Baltimore, MD, USA

The generation of terahertz frequency radiation (0.1-10 THz) is an important technological goal due to the use of this non-ionizing radiation to penetrate a wide range of non-conducting materials. One outstanding problem has been the propagation of THz radiation in guided wave devices. Few studies on the construction of efficient THz waveguide devices have been performed. We designed and ...

Edge Element and Second-Order Nodal Analysis for Arbitrary Shaped Waveguides

H. Arab[1], F. Afshar[2], C. Akyel[1]
[1]École Polytechnique de Montréal, Montréal, QC, Canada
[2]Department of Electrical and Computer Engineering, McGill University, Montréal, QC, Canada

In this project a two dimensional second order nodal and linear edge elements programming model for homogeneous waveguide is developed and simulated in MATLAB® software Environment. The objective is to reduce or eliminate spurious solutions and to cater for any arbitrarily shaped waveguides using triangular edge elements. The formulation is developed using the E-Field and to make use of the ...

Thermal Analysis of Metamaterial for High Energy Microwave (HEM) Devices

Vaishali Rawat[1], Sougata Chatterjee[2], Shantanu Das[3], S.N.Kale[1]
[1]Defense Institute of Advanced Technology, Pune, India
[2]Giant Metrewave Radio Telescope,Tata Institute of Fundamental Research,Pune, India
[3]Reactor Control Division, B.A.R.C., & Adjunct Faculty, DIAT, Pune, India

Metamaterial [1, 2] is an artificially structured material where it’s electrical (ϵ), magnetic (μ) and its refraction properties (n) are simultaneously negative in narrow frequency band. Currently, metamaterials are being widely used in microwave and radio frequencies as devices [3, 4] like filter, coupler, antenna etc. However, the applicability of metamaterial as High Energy Microwave (HEM) ...

Coupled RF Thermal Analysis of High Power Couplers for Accelerator Cavities

R. Kumar[1], P. Singh[1]
[1]Bhabha Atomic Research Center, Trombay, Mumbai, India

High-power couplers working at 350 MHz for particle accelerator cavities are presently under development in the LEHIPA project at BARC. It is important to analyze RF losses on conducting surfaces and resulting thermal profiles. COMSOL Multiphysics® is used to study these coupled RF-thermal effects and estimate cooling requirements for these couplers. The RF loss on the copper conductors and ...

Quick Search