Quick Search

Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Linear LS Parameter Estimation of Nonlinear Distribute Finite Element Models

E. Sparacino[1], D. Madeo[1], and C. Mocenni[1]

[1]Dipartimento di Ingegneria dell’Informazione, Università di Siena, Siena, Italy

This work concerns the development of a new direct parameter identification procedure for a class of nonlinear reaction- diffusion equations. We assume to know the model equations with the exception of a set of constant parameters, such as diffusivity or reaction term parameters. Using the Finite Element Method we are able to transform the original partial differential equation into a set of ...

Computation of Three-Dimensional Electromagnetic Fields for an Augmented Reality Environment

A. Buchau, and W. Rucker
Institut für Theorie der Elektrotechnik, Universität Stuttgart, Germany

Augmented reality is predestined for visualization of electromagnetic fields in air or inside transparent matter. Real existing objects are studied and invisible electromagnetic fields are added as virtual objects. Hence, experts as well as students are able to connect electromagnetic fields easily with studied objects. They can concentrate on physical effects instead on reading figures. Here, an ...

Use of COMSOL as an Educational Tool Through its Application to Ground Water Pollution

A. Modaressi-Farahmand-Razavi[1]
[1]MSS-Mat Laboratory, CNRS, Ecole Centrale Paris, Châtenay Malabry, France

Ensuring the quality of underground water and controlling its quantity is of major concern for the population. Therefore, this subject attracts many students from different specialties at different levels of their curriculum. In fact, the pedagogic objectives of the course may be different according to the level or/and interest of the students and COMSOL is used due to its versatility. In this ...

COMSOL Implementation of Valet-Fert Model for CPP GMR devices

T. Xu[1], C.K.A. Mewes[1], S. Gupta[2], and W.H. Butler[1]
[1]Department of Physics and Astronomy and Center for Materials for Information Technology, University of Alabama, Tuscaloosa, Alabama, USA
[2]Department of Metallurgical and Materials Engineering and Center for Materials for Information Technology, University of Alabama, Tuscaloosa, Alabama, USA

The Giant Magneto Resistance (GMR) effect is a quantum mechanical effect which can be observed in systems consisting of thin alternating ferromagnetic and non-ferromagnetic layers. Simulation using COMSOL allows the evaluation of the magneto-resistance ratio and the electrical resistances of realistic CPP-GMR devices and opens the possibility to study new device materials and designs.

ComsolGrid – A Framework For Performing Large-Scale Parameter Studies Using COMSOL Multiphysics and Berkeley Open Infrastructure for Network Computing (BOINC)

C.B. Ries, and C. Schröder
University of Applied Sciences Bielefeld, Germany

BOINC (Berkeley Open Infrastructure for Network Computing) is an open-source framework for solving large-scale and complex computational problems by means of public resource computing (PRC). In contrast to massive parallel computing, PRC applications are distributed onto a large number of heterogeneous client computers connected by the Internet where each computer is assigned an individual task ...

Design Optimization of an Electronic Component with an Evolutionary Algorithm Using a MATLAB-COMSOL Based Model

E. Pelster, and D. Wenger
Wenger Engineering GmbH
Ulm, Deutschland

Electric construction components exposed to alternating high voltage have to withstand a significant amount of thermal loads and, resulting from the changes in Temperature , structural stresses. In order to achieve minimization of these loads, optimizing the geometry can be a helpful tool in the design process. In this study COMSOL is used to predict thermal and mechanical loads on a high ...

Dynamic Simulation of Bone Morphogenetic Protein Patterning in a 3D Finite-Element Model of the Danio Rerio Embryo

D. Umulis, and S. Lee
Purdue University
West Lafayette, IN

Zebrafish development of the dorsoventral axis relies on the spatiotemporal distribution of Bone Morphogenetic Protein (BMP) signaling, which is regulated by numerous secreted molecules such as Tolloid, Sizzled, and Chordin. The rich dorsal/ventral patterning network must achieve both spatial precision in the patterning of downstream targets and confernspatial precision at distinct time points in ...

A Simplified Numerical Model for Simulating Sliding Door and Surgical Staff Movement in an Operating Theater

C. Balocco[1]
[1]Dipartimento di Energetica, Università di Firenze, Firenze, Italy

This paper deals with a numerical investigation on sliding door and people moving effects on the indoor climate of a standard ISO5 class OT with an ultraclean air filter system and a total ceiling unidirectional diffuser. A simple method to analyze the effects on the OT climate by different sliding door conditions combined with crossing persons and persons with a stretcher crossing is provided. ...

Using COMSOL for Optimal Design of Engineering Barriers of Nuclear Waste Repositories

L.M. de Vries[1], A. Nardi[1], A.E. Idiart[1], P. Trinchero[1], J. Molinero[1], F. Vahlund[2], H. von Schenck[2]
[1]Amphos 21, Barcelona, Spain
[2]Swedish Nuclear Fuel and Waste Management, Stockholm, Sweden

The Swedish Nuclear Fuel and Waste Management Co (SKB) is responsible for final disposal of spent fuel and radioactive waste. SKB operates SFR, an underground waste repository in crystalline rock. The evolution of groundwater flow within the repository needs to be estimated considering different options for the design of the engineered barriers. The goal is to predict the effects of flow and ...

Fracture on Circuit Board Internal Layers Due to Thermal Stress on Soldered Pins

F. Figueroa[1], P. Aguirre[1]
[1]Sensor Technik Wiedemann GmbH, Kaufbeuren, Germany

Circuit board failures are often ignored because they could be impreceptible. This simulation examines how internal layers around a soldered pin via subject to temperature changes during the soldering process are affected, show the forces involved and determine breaking points. A 2D thermo-mechanical model of a soldered pin is achieved in two simulation steps. First, a connecting pin already ...