Technical Papers and Presentations

Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

The Use of COMSOL in Teaching Heat and Moisture Transport Modeling in Building Constructions

A.W.M. van Schijndel[1] and H.L. Schellen[1]
[1]Eindhoven University of Technology, Eindhoven, The Netherlands

This paper presents the use of the multiphysics package COMSOL for teaching heat and moisture transport modeling in the research area of building physics. It includes a description on how COMSOL works and six exercises with 2D, 3D, steady state and transient models. It is concluded that COMSOL is a very useful tool for this kind of engineering education. Especially, the abstraction level of ...

Estimation of Boundary Properties Using Stochastic Differential Equations and COMSOL

A. Atalla[1], and A. Jeremic[1]
[1]McMaster University, Hamilton, Ontario, Canada

The inverse diffusion problems deal with the estimation of many crucial parameters such as the diffusion coefficient, source properties, and boundary conditions. Such algorithms are widely applied in many design problems in different physical, chemical, and biological fields. Recently, the estimation of the boundary properties, of the diffusion process, have attracted researchers. We first ...

Finite Element Analysis of Molecular Rydberg States

M.G. Levy[1], X. Liang[1], R.M. Stratt[1], and P.M. Weber[1]

[1]Department of Chemistry, Brown University, Providence, Rhode Island, USA

Identifying molecules requires associating molecular structures with their electronic energy levels. In this paper we introduce a novel technique for the calculation of molecular Rydberg levels. The technique allows for easy visualization of the associated wavefuntions to make unambiguous assignments. The value calculated for the 3p state of trimethylamine is most closely in agreement with recent ...

Investigations on Hydrodynamic in Stirred Vessels for Educational Purposes

A. Egedy, T. Varga, and T. Chován
University of Pannonia
Department of Process Engineering
Veszprém, Hungary

With detailed hydrodynamic modelling of a system the critical parameters and operation limits can be determined. In the field of fluid dynamic and reactor engineering one of the most important aspects is the practical knowledge of future engineers and technicians. In our research several different reactor constructions and impeller configurations were modelled to achieve a better ...

Explicit Dosimetry for Photodynamic Therapy; Singlet Oxygen Modeling based on Finite-Element Method

Ken Kang-Hsin Wang[1], and Timothy C. Zhu[1]
[1]Department of Radiation Oncology, School of Medicine, University of Pennsylvania, Philadelphia, PA, USA

Singlet oxygen (1O2) is the major cytotoxic agent during type-II photodynamic therapy (PDT). The production of 1O2involves the complex reactions among cancer agent, oxygen molecule, and treatment laser light. The light propagation in tumor tissue is described by the diffusion equation. In this work, an optimization routine is developed to fit the [1O2]rx profile to the simulated necrosis ...

Simplified Numerical Model of an Axial Impeller

A.-M. Georgescu[1], S.-C. Georgescu[2]
[1]Hydraulics and Environmental Protection Department, Technical University of Civil Engineering, Bucharest, Romania
[2]Hydraulics Department, University “Politehnica”, Bucharest, Romania

We propose a simplified numerical method to model the flow field downstream of an axial impeller. The method can be used for any axial hydraulic machinery for which, one is less interested by the flow between the blades, than by the flow field downstream of the machinery. The method is applied to an axial fan for which the pressure - flow rate curve is available. Numerical results are obtained ...

COMSOL Implementation of Valet-Fert Model for CPP GMR devices

T. Xu[1], C.K.A. Mewes[1], S. Gupta[2], and W.H. Butler[1]
[1]Department of Physics and Astronomy and Center for Materials for Information Technology, University of Alabama, Tuscaloosa, Alabama, USA
[2]Department of Metallurgical and Materials Engineering and Center for Materials for Information Technology, University of Alabama, Tuscaloosa, Alabama, USA

The Giant Magneto Resistance (GMR) effect is a quantum mechanical effect which can be observed in systems consisting of thin alternating ferromagnetic and non-ferromagnetic layers. Simulation using COMSOL allows the evaluation of the magneto-resistance ratio and the electrical resistances of realistic CPP-GMR devices and opens the possibility to study new device materials and designs.

Optimum Design of Dual-modality Sensing Electrode Array

W. Huaxiang, W. Jing, H. Li, and J. Weiwei
School of Electrical Engineering & Automation, Tianjin University, Tianjin, Taiwan

Sensing electrodes array model of 3-Dimensional ERT/ ECT dual modality is established by using the software COMSOL. According to the uniformity of sensitivity field distribution, the correlation coefficient and the reconstructed image space resolution, the ECT/ERT dual modality sensing electrode arrays are optimized. Experimental results show that the optimized sensing electrode array of the ...

Computational Building Physics using Comsol: Research, Education and Practice

J. van Schijndel
Eindhoven University of Technology,
Eindhoven, The Netherlands

Jos van Schijndel completed his MSc in 1998 at the Department of Applied Physics at the Eindhoven University of Technology (TUe). In 2007 he obtained a PhD degree at the TUe on integrated heat, air and moisture modeling. Currently, he is assistant professor focusing on Computational Building Physics. His passion is creative computational modeling using state of art scientific software and ...

Using COMSOL for Smart Determination of Material Properties Using Inverse Modeling Techniques

J. van Schijndel, S. Uittenbosch, and T. Thomassen
Eindhoven University of Technology
Eindhoven, Netherlands

The paper presents the development of a method that determines building material and surface properties using relative simple and low-budget experiments, The method comprehends an optimal design of an experimental set up for smart determination of heat and moisture properties using both normal and inverse modeling techniques. It is concluded that the suggested methodology of the inverse ...

Quick Search