Technical Papers and Presentations

Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Second Order Drift Forces on "Offshore" Wave Energy Converters

L. Martinelli[1], A. Lamberti[1], and P. Ruol[2]

[1]DISTART Idraulica, Università di Bologna, Bologna, Italy
[2]IMAGE, Università di Padova, Padova, Italy

Objective of this contribution is to present a procedure for evaluating second order drift forces on floating bodies, often the most important loading component for mooring design, in case of high waves propagating in relatively shallow water depths. The non linearity associated to this condition, which is typical of installations involving wave energy converters, makes this problem particularly ...

Explicit Dosimetry for Photodynamic Therapy; Singlet Oxygen Modeling based on Finite-Element Method

Ken Kang-Hsin Wang[1], and Timothy C. Zhu[1]
[1]Department of Radiation Oncology, School of Medicine, University of Pennsylvania, Philadelphia, PA, USA

Singlet oxygen (1O2) is the major cytotoxic agent during type-II photodynamic therapy (PDT). The production of 1O2involves the complex reactions among cancer agent, oxygen molecule, and treatment laser light. The light propagation in tumor tissue is described by the diffusion equation. In this work, an optimization routine is developed to fit the [1O2]rx profile to the simulated necrosis ...

Parameter Identification in Partial Integro-Differential Equations for Physiologically Structured Populations

S. Moenickes, O. Richter, and K. Schmalstieg
Institut für Geoökologie, Abt. Umweltsystemanalyse, Technische Universität Braunschweig, Germany

Continuous dynamic models, e.g. COMSOL based simulations, play – besides statistical or iterative methods – a mayor role in theoretical ecology; in forecasting and management, but also in systems analysis. Ecological issues generally comprise highly interacting agents and/or unknown side effects. Here we show how combining direct simulation with COMSOL with simple optimization tools ...

Finite Element Analysis of Molecular Rydberg States

M.G. Levy[1], X. Liang[1], R.M. Stratt[1], and P.M. Weber[1]

[1]Department of Chemistry, Brown University, Providence, Rhode Island, USA

Identifying molecules requires associating molecular structures with their electronic energy levels. In this paper we introduce a novel technique for the calculation of molecular Rydberg levels. The technique allows for easy visualization of the associated wavefuntions to make unambiguous assignments. The value calculated for the 3p state of trimethylamine is most closely in agreement with recent ...

Simplified Numerical Model of an Axial Impeller

A.-M. Georgescu[1], S.-C. Georgescu[2]
[1]Hydraulics and Environmental Protection Department, Technical University of Civil Engineering, Bucharest, Romania
[2]Hydraulics Department, University “Politehnica”, Bucharest, Romania

We propose a simplified numerical method to model the flow field downstream of an axial impeller. The method can be used for any axial hydraulic machinery for which, one is less interested by the flow between the blades, than by the flow field downstream of the machinery. The method is applied to an axial fan for which the pressure - flow rate curve is available. Numerical results are obtained ...

Virtual Experiments: Numerical Computations as a Powerful Tool for Engineers

P. Schmitz[1], A. Cockx[2], S. Geoffroy[3], and J. Gunther[1]
[1]Biochemical Engineering Dpt., Université de Toulouse, Toulouse, France
[2]Chemical Engineering Dpt., Université de Toulouse, Toulouse, France
[3]Mechanical Engineering Dpt., Université de Toulouse, Toulouse, France

An undergraduate course is developed to initiate future engineers to multiphysics numerical simulation by approaching concrete cases in various fields such as: heat transfers, fluid flow, mechanics, chemistry and electrostatics. The so called “Virtual Experiments” course consists of four projects given successively to students. Each project lasts about ten hours. The major notions related to ...

Optimum Design of Dual-modality Sensing Electrode Array

W. Huaxiang, W. Jing, H. Li, and J. Weiwei
School of Electrical Engineering & Automation, Tianjin University, Tianjin, Taiwan

Sensing electrodes array model of 3-Dimensional ERT/ ECT dual modality is established by using the software COMSOL. According to the uniformity of sensitivity field distribution, the correlation coefficient and the reconstructed image space resolution, the ECT/ERT dual modality sensing electrode arrays are optimized. Experimental results show that the optimized sensing electrode array of the ...

Computation of Space-Time Patterns via ALE Methods

V. Thümmler1, and A. Weddemann2
1Department of Mathematics, Bielefeld University, Bielefeld, Germany
2Department of Physics, Bielefeld University, Bielefeld, Germany

Partial differential equations which exhibit solutions that are spatial temporal patterns are often found in biological and chemical systems, e.g. when describing pattern formation in reaction-diffusion systems.Special classes of such patterns are relative equilibria and relative periodic orbits, which are solutions that in an appropriately co-moving frame of reference are stationary and ...

Investigations on Hydrodynamic in Stirred Vessels for Educational Purposes

A. Egedy, T. Varga, and T. Chován
University of Pannonia
Department of Process Engineering
Veszprém, Hungary

With detailed hydrodynamic modelling of a system the critical parameters and operation limits can be determined. In the field of fluid dynamic and reactor engineering one of the most important aspects is the practical knowledge of future engineers and technicians. In our research several different reactor constructions and impeller configurations were modelled to achieve a better ...

Building Energy Simulation Using the Finite Element Method

J. van Schijndel[1]
[1]Eindhoven University of Technology, Eindhoven, The Netherlands

In order to predict, improve and meet a certain set of performance requirements related to the indoor climate of buildings and the associated energy demand, building energy simulation (BES) tools are indispensable. Due to the rapid development of FEM software and the Multiphysics approaches, it should possible to build and simulate full 3D models of buildings regarding the energy demand. The ...

Quick Search