The Application Gallery features COMSOL Multiphysics® tutorial and demo app files pertinent to the electrical, structural, acoustics, fluid, heat, and chemical disciplines. You can use these examples as a starting point for your own simulation work by downloading the tutorial model or demo app file and its accompanying instructions.
Search for tutorials and apps relevant to your area of expertise via the Quick Search feature. Note that many of the examples featured here can also be accessed via the Application Libraries that are built into the COMSOL Multiphysics® software and available from the File menu.
Switched reluctance motors work on the principle of reluctance torque. The stator and rotor will interact to minimize the reluctance for the flux path. This application simulates the behavior of the motor when the stator winding is excited with a step voltage and when the rotor is at a ... Read More
Two approaches are demonstrated to introduce a goal-seeking Global Equation into a COMSOL Multiphysics® model. This Global Equation acts to adjust a single input of the model such that any single scalar output of the model takes on a desired target value, or goal. Learn more in ... Read More
This example exemplifies how to compute the design sensitivities of your COMSOL Multiphysics® model. A more detailed description of the modeling process can be seen in the blog post "Computing Design Sensitivities in COMSOL Multiphysics". Read More
This example exemplifies how to model the impedance of a waveguide of varying cross sectional area. A more detailed description of the phenomenon and the modeling process can be seen in the blog post "Computing the Impedance of a Corrugated Waveguide". Read More
This model illustrates the working principle of an axial homopolar induction bearing. An electrically conducting rotor rotating in a magnetic field produced by a permanent magnets induces eddy currents on the conducting rotor. The eddy currents, in turn, produce a magnetic field that ... Read More
This demonstration app will fit a surface through a set of points using radial basis functions and will write out a COMSOL-format file of a smooth NURBS surface that passes through all of the points. The function describing the surface can also be written to a text file. The point data ... Read More
This example exemplifies how to optimize the design of a capacitor through optimization. A more detailed description of the phenomenon and the modeling process can be seen in the blog post "Changing the Dimensions of a Model Using Shape Optimization". Read More
This model demonstrates the ability to simulate Multibody Dynamics in COMSOL. It comprises a multilink mechanism that is used in an antique automobile as a gearshift lever. It was created out of curiosity to find out how large forces are on the individual components. The model uses ... Read More
Solving very large pressure acoustics models in the frequency domain can be challenging. Several iterative solver suggestions exist for the default physics setups and the default quadratic Lagrange discretization. For very large models it can be advantageous to switch from quadratic to ... Read More
This example exemplifies how you can export the data from your mesh and results to a text file. A more detailed description of the phenomenon and the modeling process can be seen in the blog post "Exporting Meshes and Solutions Using the Application Builder". Read More