Quick Search

Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Modeling Horizontal Ground Heat Exchangers in Geothermal Heat Pump Systems

A. Chiasson
University of Dayton, Dayton, OH, USA

Geothermal heat pumps use the earth as a heat source and sink via a ground heat exchanger (GHX) that consists of a network of buried heat exchange pipes, which can either be installed in vertical boreholes or in shallow horizontal trenches or excavations. The main goal in GHX design is to determine the minimum length of pipe needed to provide adequate fluid temperatures to heat pumps over their ...

Particle Velocimetry Data From COMSOL Model of Micro-channels

P. Mahanti, M. Keebaugh, N. Weiss, P. Jones, M.A. Hayes, and T. Taylor
Arizona State University, Tempe, AZ, USA

Particle velocimetry using image analysis is an effective non-intrusive method used for fluid velocity field estimation in micro-channels. We use COMSOL with MATLAB to generate velocity fields for micro-channel designs and then calculate changes in particle position for given imaging parameters. This is used to simulate images which can then be used to verify an algorithm\'s performance before ...

COMSOL Assisted Simulation of Laser Engraving

H. Karbasi
Conestoga College, Kitchener, ON, Canada

The main purpose of this paper is to develop a proof of concept software that can simulate the geometry of engraved surfaces and can estimate the depth and width of engraved groove and associated laser parameters. For this purpose, COMSOL has been used to simulate the moving laser beam as a source of heat over physical domain made of different materials. Through interaction modeling of ...

Simulations of Meniscus Motion and Evaporation for Convective Deposition Manufacturing

J. Xiao, and D. Attinger
Columbia University, New York, NY, USA

Convective deposition is a material processing technique where an evaporating meniscus of a colloidal suspension is dragged along a solid substrate to deposit layers of micro or nanoparticles. The process is a typical multiphysics process where fluid dynamics, mass and heat transfer come into play in a small deforming domain. In this work, we describe an Arbitrary Lagrangian-Euler model ...

Modeling of Transport and Reaction in a Catalytic Bed Using a Catalyst Particle Model

F. Allain, and A.G. Dixon
Worcester Polytechnic Institute, Worcester, MA, USA

A packed bed reactor consisting of spherical catalyst particles in a tube was simulated numerically. The steady-state pseudo-heterogeneous model consisted of a pseudo-continuum representation for the heat and mass transfer in the reactor tube. The reaction source terms were evaluated by explicitly solving a 1D spherical pellet model at each discretization point. The model implemented in COMSOL ...

Modeling of a Helical Coil Heat Exchanger for Sodium Alanate Based on-board Hydrogen Storage System

S. Kumar[1], and M. Raju[2]
[1]General Motors R&D Center, Warren, MI, USA
[2]Optimal CAE Inc., Detroit, MI, USA

Hydrogen refueling in a metal hydride based automotive hydrogen storage system is an exothermic reaction and hence an efficient heat exchanger is required to remove the heat for fast refueling. In this paper a helical coil heat exchanger embedded in a sodium alanate bed is modeled using COMSOL. Sodium alanate is present in the shell and the coolant flows through the helical tube. A ...

Modeling and Simulation of a Piezoelectric Micro-Power Generator

E. Abdel-Rahman, M. Pallapa, M.A.S. Aly, L. Wong, A.I.H. Chen, K.W. Wong, and J.T. Yeow
University of Waterloo, Waterloo, ON, Canada

Micro-power generators (MPGs) harvest and store small amounts of ambient energy. The motivation of this paper is to compare the MPG modeling and simulation results obtained from COMSOL Multiphysics® with those obtained using three other approaches: CoventorWare®, ANSYS® and lumped element analysis. The MPG is composed of two identical micro-cantilever beams made of a piezoelectric ...

A Directional Dogbone Flextensional Sonar Transducer

S.C. Butler
Naval Undersea Warfare Center, Newport, RI, USA

In order to transmit energy in one direction, sonar flextensional transducers are combined into arrays of elements that are spaced a 1/4 wavelength apart. The directionality (front-to-back pressure ratio) is a modest of 6 dB. A single projector that is 1/3 wavelength in size and capable of developing unidirectional beams with front-to-back ratios greater than 20 dB that is independent of sound ...

Modeling Light Diffraction Using the Finite Element COMSOL

J.D. Bamonte
U.S. Naval Academy, Annapolis, MD, USA

COMSOL is finite element modeling software capable of solving partial differential equations. This capability allows for the modeling of boundary value problems, which is necessary to the study of light and the properties of light propagation. For this study, we are modeling Fraunhofer diffraction of light using a solution of the Helmholtz equation with boundary values appropriate for ...

Analysis of Acoustic Response of Rooms

J.S. Crompton[1], L.T. Gritter[1], S. Yushanov[1], K.C. Koppenhoefer[1], and D. Magyari[2]
[1]AltaSim Technologies, LLC, Columbus, OH, USA
[2]Golden Acoustics, Detroit, MI, USA

The preferred acoustic response of recording studios, auditoriums and conference halls is to have an even energy response over the entire room and throughout full audio spectrum. This can be accomplished by using acoustic panels with complex surface structures that scatter acoustic waves and diffuse sound level variability over the room volume or through the use of sound absorbing materials to ...