Technical Papers and Presentations

Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Modification of the Ion Angular Distribution in Plasma Sheath: Modeling Approach under COMSOL Multiphysic

J. Brcka
TEL US Holdings, Albany, NY, USA

System for in-situ control of the ion angular distribution function (IADF) in plasma reactor is modeled. Typical IADF depends on the pressure, bias and excitation frequency. It is formed due to a difference in the physical properties of the plasma and sheath domains. The IADF is modified by biased grid which is built into a holder. The time varying E-field in sheath is influencing the ion path. ...

Simulation of the Spread of Epidemic Disease Using Persistent Surveillance Data

Y. Liang[1], Z. Shi[1], S. Sritharan[1], and H. Wan[2]
[1]Central State University, Wilberforce, OH, USA
[2]Wright State University, Dayton, OH, USA

This paper proposes a novel data-mining framework to simulate the spread of epidemic diseases using persistent surveillance data. The framework is formulated by merging the persistent surveillance data about epidemics, geographic information and the dynamics of disease into a heat transfer model according to the theory of statistical mechanics . In the implementation of this framework, geographic ...

Modeling Light Diffraction Using the Finite Element COMSOL

J.D. Bamonte
U.S. Naval Academy, Annapolis, MD, USA

COMSOL is finite element modeling software capable of solving partial differential equations. This capability allows for the modeling of boundary value problems, which is necessary to the study of light and the properties of light propagation. For this study, we are modeling Fraunhofer diffraction of light using a solution of the Helmholtz equation with boundary values appropriate for ...

Simulation of Heating Sol-Gel Thin Film By Laser Pulse Train

J. Zhang[1], Y. Mizuyama[1], W. Xiong[2], Y. Zhou [2], and Y. Lu[2]
[1]Panasonic Boston Laboratory, Newton, MA, USA
[2]University of Nebraska, Lincoln, NE, USA

Simulation of laser pulse-train (25ns, 60 kHz and 3000 pulses) heating Sol-Gel thin film using COMSOL Multiphysics software is investigated. The results show two kinds of temperatures formed on film surface by laser pulse-train heating. One is a single pulse induced transient peak-temperature, which is up to ~1635oC on both Si and glass substrates. The other is the accumulated-temperature ...

Characterization of an AlGaN/GaN Electrostatically Actuated Cantilever Using the Finite Element Method

N. DeRoller, M. Qazi, J. Liu, and G. Koley
University of South Carolina, Columbia, SC, USA

AlGaN/GaN heterostructures are unique because the 2DEG at the interface is created by the difference in polarization properties of the AlGaN and the GaN layers; not due to intentional doping. In this work, a 3D model of an electrostatically actuated micro cantilever has been developed using COMSOL for characterization using the finite element method (FEM). The microcantilever has AlGaN/GaN HFET ...

Modeling Microfluidic Separations Using COMSOL Multiphysics

B.A. Finlayson[1], and R.A. Shaw[2]
[1]University of Washington, Seattle, WA, USA
[2]National Research Council of Canada, Winnipeg, MB, Canada

Infrared spectroscopy can be used to identify chemicals in a stream provided the signal is strong enough. A microfluidic device is modeled here with the objective of separating serum components so as to enhance the metabolite/protein concentration ratio. Serum contains creatinine (a representative metabolite) and albumin (representative protein). The laminar fluid diffusion interface (LFDI) ...

Analysis of Multiconductor Quasi-TEM Transmission Lines and Multimode Waveguides

S.M. Musa[1], M.N.O. Sadiku[1], and O.D. Momoh[2]
[1]Prairie View A&M University, Prairie View, TX, USA
[2]Indiana University-Purdue University, Fort Wayne, IN, USA

This paper presents an analysis approach of multicondcutor quasi-TEM lines transmission interconnect in a single dielectric region and multimode waveguides using the finite element method (FEM). FEM is especially suitable and effective for the computation of electromagnetic fields in strongly inhomogeneous media. We illustrate that FEM is suitable and effective as other methods for modeling of ...

Phonon Tunneling Loss Solver for Micro- and Nanomechanical Resonators

G.D. Cole[1], M. Aspelmeyer[1], and I. Wilson-Rae[2]
[1]University of Vienna, Vienna, Austria
[2]Technical University Munich, Munich, Germany

Micro-and nanoscale mechanical resonators have recently emerged as ubiquitous devices for use in advanced technological applications, for example in mobile communications and inertial sensors, and as novel tools for fundamental scientific endeavors. We report a significant advancement towards understanding and controlling support-induced losses through the demonstration of an efficient numerical ...

COMSOL Multiphysics-Based Exploratory Insulin Secretion Model for Isolated Pancreatic Islets

P. Buchwald
University of Miami, Miami, FL, USA

Insulin released by the beta-cells of pancreatic islets is the main regulator of glucose homeostasis, hence, insulin secretion models are of considerable interest for many possible applications. Building on our previous oxygen consumption and cell viability model for avascular islets of Langerhans, we developed an exploratory insulin secretion model that couples the hormone production rate to the ...

Modeling Energy Harvesting From Membrane Vibrations in COMSOL

R.K. Kapania, R.C. Singh, and C. Sultan
Virginia Polytechnic Institute and State University, Blacksburg, VA, USA

This paper presents an ongoing effort, motivated by developing self-contained sensors for structural health monitoring of inflatable structures, to model the process of extracting useable electrical power from the mechanical vibrations of thin, prestressed membrane structures. Energy harvesting from mechanical vibrations of these structures may provide enough power to operate both the sensors as ...

Quick Search