See How Modeling and Simulation Is Used Across Industries
Multiphysics modeling and simulation drives innovation across industries and academia — as is evidenced by the many uses showcased in the technical papers and posters presented by engineers, researchers, and scientists at the COMSOL Conference each year.
Draw inspiration from the recent proceedings collected below, or, to find a specific presentation or filter by application area or conference year/location, use the Quick Search tool.
View the COMSOL Conference 2025 Collection
Underground mines that employ the sublevel caving (SLC) method often suffer from significant levels of ore dilution due to the technique of extracting ore through gravity flow. When the ore is blasted and falls into drifts, it creates the drawpoints where Load-Haul-Dump (LHD) vehicles ... Read More
Guided wave technology offers a promising approach for non-destructive testing (NDT), particularly in the detection of corrosion in critical structures such as pipelines. This study focuses on utilizing COMSOL Multiphysics to simulate guided wave propagation for optimizing corrosion ... Read More
Automotive battery development requires continuous improvements to be more time- and cost-efficient. Limited availability of prototype cells at various stages of design or of differing chemistry, age and health is a major challenge. A highly integrated model-based developing process can ... Read More
The integrity and safety of reinforced concrete structures are of paramount importance in civil engineering. Detection of flaws in prestressed tendons, especially those buried at critical depths greater than 20 cm, presents a significant challenge. Magnetic flux leakage (MFL) is a non ... Read More
Acoustic emissions generated by active defects in structures, like bridges, aircraft, and pipelines, play a crucial role in detecting flaws in their structural integrity by non-destructive evaluation techniques. Commercially used acoustic emission (AE) sensors are made of piezoelectric ... Read More
This study investigates the thermal deformation process in Surface Thermal Lensing (STL), a non-destructive technique used to characterize optical materials based on their absorption properties. A fused quartz sample (10mm10mm3.3mm) was modeled with adiabatic free boundaries on the upper ... Read More
Optical wave interference can perform instantaneous operations, such as: addition, subtraction, multiplication, and more complex operations like Fourier transform [1]. Being able to develop an optical computer that directly executes these operations without the need for a digital ... Read More
In this work, we demonstrate the implementation of the micromagnetic equations for the description of ferromagnetic thin films in COMSOL Multiphysics®. We apply our model to magnetoresistive sensors consisting of several soft ferromagnetic layers and their response to magnetic particles. ... Read More
Ultrasound transducers are regularly used in medical clinics but their performance is known to deteriorate over time. Causes of this image quality degradation can include delamination between layers, physical breakage of components, short circuits and weakening crystals. Regular ... Read More
A numerical multiphase flow model is proposed to predict the behavior and motion of entrained inclusions in liquid steel, as they enter the orifice of a LiMCA (Liquid Metal Cleanliness Analyzer) sensor for assuring steel quality. The method of measurement is based on the electric sensing ... Read More
