Quick Search

Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Calibration of a Bio-Kinetic Model to Simulate Microalgae Growth - new

A. Solimeno[1], J. Garcia[2]
[1]Department of Hydraulic, Maritime and Environmental Engineering, Universitat Politècnica de Catalunya, Barcelona, Spain
[2]Universitat Politecnica de Catalunya, Barcelona, Spain

The aim of present work is to present and calibrate a new mechanistic model that includes physical and biokinetic processes to reproduce the algae growth in photobioreactor or ponds during long-term scenarios. A COMSOL Multiphysics® model is used to implement the microalgae processes mainly based on River Water Quality Model 1 (RWQM1) (Reichert et al., 2011). The main innovation of the model is ...

Studies of Lead Free Piezo-Electric Materials Based Ultrasonic MEMS Model for Bio sensor

P. Pattanaik[1], S. K. Kamilla[1], D. P. Das[2], S. K. Pradhan[3]
[1]MEMS Design Center, Institute of Technical Education & Research (ITER), Sikhya ‘O’ Anushandhan University, Bhubaneswar, Odisha, India
[2]Process Engineering and Instrumentation Lab, Institute of Minerals and Materials Technology (IMMT), Bhubaneswar, Odisha, India
[3]Dept of ECE, Hi-Tech Institute of Technology, Khurda, Odisha, India

This paper describes the design of an ultrasonic transducer using different lead free piezo-electric materials and evaluates their performance with different glucose levels in the human blood. COMSOL Multiphysics 4.2a was used for the simulation study using 2D axis symmetric model of piezoelectric transducer which was designed with lead free piezoelectric materials such as Barium Sodium Niobate ...

Pushability Model of a Microcatheter for Intravascular Procedures

M. Miliani[1], F. Piccagli[1]
[1]Medtronic Invatec S.p.A., Roncadelle, BS, Italy

During peripheral intravascular interventions one of the main issues is the correct deployment of the guidewire (GW) to the anatomical site which has to be treated, often supported by a microcatheter. There is a trade-off between the microcatheter flexibility and its push-ability to be able to reach the anatomical site. The catheter design has been defined with 2 transition zones. A parametric ...

Simulation of Chemotractant Gradients in Microfluidic Channels to Study Cell Migration Mechanism in Silico

P. Wallin[1], E. Bernson[1], J. Gold[1]
[1]Chalmers University of Technology, Applied Physics, Biological Physics, Gothenburg, Sweden

Cell migration of endothelial cells along gradients is an important process in vivo and an interesting target for cancer therapeutics. Microfluidics offer very powerful tools to study such migration processes in detail in the lab. In this study, we describe a model to simulate molecular gradients in a diffusion based microfluidic gradient generator and how a cell senses these gradients via cell ...

Comparative Study on 3D Modeling of Breast Cancer Using NIR-FDOT - new

S. Peter[1]
[1]Christ University, Bengaluru, Karnataka, India

Fluorescence Diffuse Optical Tomography (FDOT) uses Near Infra-Red (NIR) light to monitor physiological changes in internal organs. NIR light being less energetic in nature can be used for continuous monitoring of tumor infected biological tissue, neonatal brain and many such applications where high energy radiation can cause severe damage. In this paper, a comparative study on the 3D modeling ...

Effect of Electrical Field Distortion on Particle-Particle Interaction Under DEP

G. Zhang[1], Y. Zhao[1], J. Hodge[1], J. Brcka[2], J. Faguet[2], E. Lee[2]
[1]Clemson University, Clemson, SC, USA
[2]TEL U.S. Holdings, Inc., U.S. Technology Development Center, Austin, TX, USA

In using DEP for particle manipulation, researchers often use a formula to calculate the DEP forces in which the forces are proportional to the particle radius to the third power. This formula assumes that the electrical field, E, will not be affected by the presence of a particle, no matter what the actual size and the dielectric property of the particle are. This work confirms that the ...

Electrical Characterization of Biological Cells on Porous Substrate Using COMSOL Multiphysics®

D. Mondal[1], C. RoyChaudhuri[1]
[1]Department of Electronics and Telecommunication Engineering, Bengal Engineering and Science University, Howrah, West Bengal, India

In this paper, the gross electrical characterization of biological cells on porous substrate is analyzed using COMSOL Multiphysics®. Dynamic electrical characterization during cell growth is used as a non-invasive and label-free technique to understand the growth kinetics of cells. It is observed from the COMSOL simulation that the percentage change in the current density is greater in porous ...

Simulation of Transdermal Toxin Expulsion via Adsorptive Dermal Patch using COMSOL Multiphysics®

H. Kwon[1], M. Hess II[1], R. M. Polski
[1]Andrews University, Berrien Springs, MI, USA

Mathematical skin models play an important role in fields such as transdermal drug delivery and assessment of dermal exposure to industrial chemicals. Extensive research has been conducted on modeling skin for transdermal drug delivery; however, little effort has been made to view the skin as a permeable layer to expel waste chemicals or toxins from the body. In this work, we focused on topical ...

Magnetostatic-Magnon Sensors for Microwave Microscopy of Biological Structures - new

E. Hollander[1], E. O. Kamenetskii[1], R. Shavit[1]
[1]Microwave Magnetic Laboratory, Department of Electrical and Computer Engineering, Ben Gurion University of the Negev, Beer Sheva, Israel

Microwave sensing and monitoring is very attractive for biological applications because of their sensitivity to water and dielectric contrast. Direct detection of biological structures in microwave frequencies and understanding of the molecular mechanisms of microwave effects is considered as a problem of a great importance. Nowadays, however, microwave technique for localized testing biological ...

Coupled Electromagnetics-Multiphase Porous Media Model for Microwave Combination Heating

V. Rakesh, and A. Datta
Dept. of Biological and Environmental Engineering, Cornell University, Ithaca, NY, USA

Although microwave heating has been studied in great detail, microwave combination heating has not. This work investigated this in a novel microwave combination system that heats the sample through a combination of microwaves and hot air. The study used a coupled electromagnetics-multiphase porous media model in COMSOL to determine the effect of combining different heating modes on heating ...