Technical Papers and Presentations

Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Application of the Focused Impedance Method (FIM) to Determine the Volume of an Object within a Volume Conductor

M. A. Kadir[1], S. P. Ahmed[2], G. D. Al Quaderi[3], R. Rahman[2], K. Siddique-e Rabbani[1]
[1]Department of Biomedical Physics & Technology, University of Dhaka, Dhaka, Bangladesh
[2]Department of Physics, Jahangirnagar University, Savar, Dhaka, Bangladesh
[3]Department of Physics, University of Dhaka, Dhaka, Bangladesh

Focused Impedance Method (FIM), a new technique of electrical impedance measurement having high sensitivity in the central region, can sense the change in transfer impedance of an object embedded at a shallow depth within a volume conductor of unchanging background conductivity, using electrodes at the surface. This paper presents a new method for measuring the volume of such an embedded object ...

Computational Analysis on Commercially Available Stent Designs

K. Basu[1], P. Ghosh[2], S. Bhattacharjee[2], S. Das [2], A. Chanda[1]
[1]School of Bio Science and Engineering, Jadavpur University, Kolkata, West Bengal, India
[2]Department of Mechanical Engineering, Jadavpur University, Kolkata, West Bengal, India

Cardiovascular disease has become a major healthcare problem. To tackle this along with bypass surgery, the use of the cardiovascular stent is considered promising and effective. In this study, we aim to find the effectiveness of stent deployments and their influence on haemodynamics post their deployment in human arteries. For the study we have reconstructed single units of two commercially ...

Simulation of the Electrode-Tissue Interface with Biphasic Pulse Train for Epi-retinal Prosthesis

S. Biswas[1], S. Das[2], M. Mahadevappa[2]
[1]Advanced Technology Development Center, Indian Institute of Technology, Kharagpur
[2]School of Medical Science and Technology, Indian Institute of Technology, Kharagpur

Retinitis Pigmentosa (RP) and Age-related Macular Degeneration (AMD) are diseases causing blindness in a large number of people. In this type of degenerative disease, mostly the photoreceptors are damaged. Thus attempts have been made to electrically stimulate the surviving inner retinal neurons and retinal ganglion cells (RGC) in order to restore vision. In this paper, the electrode-tissue ...

Simulation Organogenesis in COMSOL: Deforming and Interacting Domains

D. Iber[1], D. Menshykau[1]
[1]D-BSSE, ETH Zurich, Basel, Switzerland

Organogenesis is a tightly regulated process that has been studied experimentally for decades. We are developing mechanistic models for the morphogenesis of limbs, lungs, and kidneys with a view to integrate available knowledge and to better understand the underlying regulatory logic. Organ size changes dramatically during development, and tissues are composed of several layers that may expand ...

COMSOL Thermal Model for a Heated Neural Micro-Probe

M. Christian[1], S. Firebaugh[1], A. Smith[1]
[1]United States Naval Academy, Annapolis, MD, USA

This project utilizes the heat transfer module of the COMSOL Multiphysics environment to model the effects that an ohmic heating probe will have on neural tissue. The model quantifies the thermal impact of active components embedded on a neural micro probe by solving the Penne’s bioheat equation with an external MATLAB function to determine the heat generation along the length of the probe. ...

Some Commonly Neglected Issues Which Affect DEP Applications

G. Zhang[1], V. Pandian[1], J. Brcka[2], J. Faguet[2], E. Lee[2]
[1]Clemson University, Clemson, SC, USA
[2]TEL U.S. Holdings, Inc., U.S. Technology Development Center, Austin, TX, USA

Dielectrophoresis (or DEP) has been exploited for various micro and nano fluidics applications like patterning, sorting and separation. However, there are several commonly neglected issues in quantifying DEP forces. Such negligence could potentially lead to wrong DEP force predictions and estimates, posing difficulties in correlating experimental observations with theories. Among the commonly ...

Effects of Flow and Diffusion on Blood Coagulation in Platelet Poor Plasma: a Two-way Coupling Between Hemodynamics and Biochemistry

D. Magnabosco[1,2], H. van Ooijen[2], B. Bakker[2], R. van den Ham[2]
[1]Politecnico di Milano, Milan, Italy
[2]Philips Research, Eindhoven, The Netherlands

Enzyme reactions, blood flow and diffusion in human vasculature play interacting and fundamental roles in blood coagulation. In this complex mechanism, the balance between blood and clot is a delicate equilibrium, whose tight regulation is vital to avoid pathologies such as bleeding and thrombosis. The secondary hemostasis triggered by tissue factor in platelet poor plasma is studied up to fibrin ...

Simulation of Transdermal Toxin Expulsion via Adsorptive Dermal Patch using COMSOL Multiphysics®

H. Kwon[1], M. Hess II[1], R. M. Polski
[1]Andrews University, Berrien Springs, MI, USA

Mathematical skin models play an important role in fields such as transdermal drug delivery and assessment of dermal exposure to industrial chemicals. Extensive research has been conducted on modeling skin for transdermal drug delivery; however, little effort has been made to view the skin as a permeable layer to expel waste chemicals or toxins from the body. In this work, we focused on topical ...

Singlet Oxygen Modeling for PDT Incorporating Local Vascular Oxygen Diffusion

T. C. Zhu[1], B. Liu[1]
[1]University of Pennsylvania, Philadelphia, PA, USA

Singlet oxygen (1O2) is the major cytotoxic agent that kills cells during photodynamic therapy (PDT). Based on a previously-developed model, the distance-dependent reacted 1O2 can be numerically calculated using finite-element method. We improved the model to include microscopic kinetic equations of oxygen diffusion from uniformly distributed blood vessels to the adjacent tissue. The blood vessel ...

Modeling Light Propagation in Skin for Visualization of Subcutaneous Veins

H. Kwon[1], R. Huancaya[1]
[1]Andrews University, Berrien Springs, MI, USA

Vein visualization systems such as the VeinViewer are vein-contrast enhancement devices that use an infrared camera to highlight blood or the underlying vasculature and project the image in real time onto the skin. Understanding the light propagation in a realistic skin model is critical, but only a few computational models have been developed to account for this particular system. We have ...

Quick Search