Technical Papers and Presentations

Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Fouling of Heat Exchangers in the Dairy Industry by Coupling Flow and Kinetics Modelling

M.V. De Bonis, and G. Ruocco
CFDfood, DITEC, Università degli studi della Basilicata, Potenza

The present work exploits modelling of a heat exchanger single channel during the pasteurization of milk. A 2D computation has been performed with COMSOL Multiphysics showing the potential application to optimized geometries and for a variety of products of known biochemical evolution.

Modeling the Coupled Heat and Mass Transfer during Fires in Stored Biomass, Coal and Recycling Deposits

F. Ferrero, M. Malow, A. Berger, and U. Krause
Bundesanstalt für Materialforschung und prüfung (BAM), Berlin, Germany

In this paper, advances in the development of a numerical model for predicting the possibility of self-ignition in stored biomass, coal heaps or underground seams and dump deposits are presented. Results from the performed simulations are compared with experimental data. Finally, some conclusions and the possibilities for future work are drawn.

Finite Element Analysis of Induced Electroosmotic Flow in Brain Tissue and Application to ex vivo Determination of Enzyme Activity

Y. Ou[1], A. Rupert[1], M. Sandberg[2], S. Weber[1]
[1]University of Pittsburgh, Pittsburgh, PA, USA
[2]University of Gothenburg, Gothenburg, Sweden

Ectopeptidases are commonly accepted to be a means of clearing active peptides. However, studies have shown that they can also regulate peptide activity. We have developed a technique of electrokinetic push-pull perfusion (Ek-PPP, Figure 1) to examine this largely unexplored mechanism of modulation of peptide function. We push the neuropeptide galanin through organotypic hippocampal slice ...

Reactive Transport Processes in Compacted Bentonite

A.E. Idiart[1], M. Pekala[1], A. Nardi[1], D. Arcos[1]
[1]Amphos 21, Barcelona, Spain

The Swedish Organization for Radioactive Waste (SKB) is considering disposal High Level Wastes in a deep underground repository. Bentonite clay is planned to be used in the near-field of the waste packages as buffer material. The buffer is expected to provide a favorable environment with limited radionuclide migration due to slow diffusion and retardation by sorption and cation-exchange effects. ...

Model Development and Implementation of a Membrane Shift Reactor

J. Völler[1], M. Follmann[1], C. Bayer[1], and T. Melin[1]

[1]AVT Chemical Process Engineering, RWTH Aachen University, Aachen, Germany

Low temperature fuel cells require hydrogen of high purity for electricity production to avoid catalyst poisoning. To purify hydrogenrich flue gases from hydrocarbon steam reforming membrane shift reactors with a metal membranes may be utilized. A model of a tubular membrane shift reactor with a hydrogenseparating palladium membrane is modeled in the COMSOL Multiphysics® Chemical Engineering ...

Quantitative assessment of the difference in free standard energy of reaction between two enantiomers of a chiral molecule and a chiral surface using a convection-diffusion model coupled to surface reactions

Bieri, M., Bürgi, T.
Université de Neuchâtel, Neuchâtel, Switzerland

Chiral surfaces and interfaces have received considerable interest in recent years due to their importance in separationand sensing of enantiomers, their application in heterogeneous enantioselective catalysis and their possibly decisive role for the origin of biochemical homochirality. In the present work, the interaction of proline with self-assembled monolayers (SAMs) of L-glutathione was ...

Design of Reactors and Heat Exchange Systems to Optimize a Fuel Cell Reformer

P. Gateau
SAS SYNGAS, Saint Viaud, France

A fuel cell reformer is heated by oxidation of the residual fuel gas. The problem is to optimize the size and the positions of the reactors and heat exchangers. Here, COMSOL was used to design the coupling of steam reforming and post-oxidation. This was simulated in a 2D model with equations describing the kinetics as well as conductive and convective heat exchange. As the objective was to ...

Evaluation of Performance of Enzymatic Biofuel Cells with Microelectrode Arrays Inside a Blood Artery via Finite Element Approach

C. Wang[1], Y. Song[1]
[1]Florida International University, Miami, FL, USA

Enzymatic biofuel cells (EBFCs) are considered as a promising candidate for powering miniature implantable devices. In order to predict the performance in the human blood artery, we simulated a 3D EBFC chip with highly dense micro-electrode arrays. In this simulation using COMSOL Multiphysics®, we applied the 1) Michaelis Menten equation; 2) Nernst potential equation; 3) Navier Strokes velocity, ...

Catalytic Reactions under Non-steadystate Conditions

S. Pietrzyk, F. Dhainaut, A. Khodakov, and P. Granger
Université de Lille

In this paper, we present the modeling of catalytic reactions under non-steadystate conditions. Particularly, we study the Fisher-Tropsch reaction in a pulse reactor.

Modeling of Heat and Mass Transport in a Nonlinear Catalytic Bed Reactor

A. Machac [1], R. Henda [2], and B. Nilsson [2]
[1] School of Engineering, Laurentian University, Sudbury, ON, Canada
[2] Lund University, Sweden

Heat and mass transport phenomena in a tubular catalytic bed reactor are numerically investigated. A two-dimensional pseudo-heterogeneous model, accounting for transport in the solid and fluid phases, with axial and radial dispersions, is used to describe the reactor. The calculation results show the development of a hot spot in the reactor. The effects of inlet process conditions are ...

Quick Search