Technical Papers and Presentations

Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Using COMSOL for Studying the Occurrence of a Constant-shaped Concentration Front in the Retention of Gaseous Pollutants by Adsorption Columns

A. Joly[1], V. Volpert[1], and A. Perrard[2]
[1] Université de Lyon
[2] Institut de Recherches sur la Catalyse, Lyon

Various models, based on mass transfer and different isothermal adsorption equilibrium laws, are developed using COMSOL Multiphysics. These isotherms are representative of the adsorption of various pollutant-adsorbent systems frequently found in decontamination processes. Consequences on breakthrough curves are examined and possible applications to decontamination processes are discussed.

Simulation of Differential Ion Mobility (DMS) Principle Coupled with Mass Spectrometry in Atmospheric Pressure

F. Sinatra[1], T. Wu[2], A. Avila[2], E. Nazarov[1], T. Evans-Nguyen[1], J. Wang[2]
[1]Draper Laboratory, Tampa, FL, USA
[2]University of South Florida, Tampa, FL, USA

Mass spectrometry is an analytical technique widely used in the scientific community to determine chemical composition of sample compounds. Typically, mass spectrometers perform their analysis under vacuum conditions, though atmospheric pressure mass spectrometers are becoming more prevalent. With the development of atmospheric pressure mass spectrometers, techniques such as FAIMS (Field ...

Modeling of an Operando Catalytic Reactor Operated in the Concentration Pulse Mode

S. Pietrzyk, A. Y. Khodakov, and C. Dujardin
Unité Catalyse et Chimie du Solide, Université des Sciences et Technologies de Lille, Ecole Nationale Supérieure de Chimie de Lille, Ecole Centrale de Lille, Villeneuve d’Ascq, France

Operando reactors are used to study, qualitatively and/or quantitatively, active sites of the catalyst and the intermediates of a catalytic heterogeneous chemical reaction, while the reaction is being carried out ("in situ, on-line catalysis studies"). In the present work, an operando reactor using transmission infra-red (IR) absorption spectroscopy has been used to study the Fischer-Tropsch ...

Simulation of the Acoustic Environment for the Manufacture of Graded Porosity Materials by Sonication

C. Torres-Sanchez, and J. R. Corney
University of Strathclyde, United Kingdom

Many materials require functionally graded cellular microstructures whose porosity is engineered to meet specific requirements of diverse applications. It has been shown in previous work that the bubble growth rate of a polymeric foam can be influenced by the surrounding acoustic environment and, once solidified, produce a solid of graded porosity. Motivated by the desire to create a flexible ...

Kinetics and Reactor Modeling of Methanol Synthesis from Synthesis Gas

H. Bakhtiary, F. Hayer, H. Venvik, A. Holmen
Norwegian University of Science and Technology Trondheim

Methanol synthesis is a typical reaction in heterogeneous catalysis. In this work, we have studied a laboratory fixed-bed reactor packed with a Cu/Zn/Al2O3 catalyst in both adiabatic and isothermal tubular operational modes. A methanol synthesis kinetic model was implemented in COMSOL Reaction Engineering Lab. Both 1D and 2D pseudo-homogeneous dispersion models were applied to describe the mass ...

Advancements in Carbon Dioxide and Water Vapor Separations Using COMSOL Multiphysics®

J. Knox[1], R. Coker[1], R. Cummings[1], C. Gomez[1], G. Schunk[1]
[1]NASA, Marshall Space Flight Center, Huntsville, AL, USA

Some NASA efforts are focused on improving current systems that utilize fixed beds of sorbent pellets by evaluating structured sorbents, seeking more robust pelletized sorbents, and examining alternate bed configurations to improve system efficiency and reliability. For the bulk separation of CO2 and H2O, temperature changes due to the heat of adsorption are significant, requiring modeling and ...

Model of Heat and Mass Transfer with Moving Boundary During Roasting of Meat in Convection-Oven

A.H. Feyissa[1], J. Adler-Nissen[1], and K.V. Gernaey[2]
[1]Food Production Engineering, National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
[2]Department of Chemical and Biochemical Engineering, Technical University of Denmark, Kgs. Lyngby, Denmark

A 2D mathematical model of coupled heat and mass transfer describing oven roasting of meat was formulated from first principles. The current formulation of model equations incorporates the effect of shrinkage phenomena and water holding capacity. The model equations are based on conservation of mass and energy. The pressure driven transport of water in meat is expressed using Darcy’s equation. ...

Model Development and Implementation of a Membrane Shift Reactor

J. Völler[1], M. Follmann[1], C. Bayer[1], and T. Melin[1]

[1]AVT Chemical Process Engineering, RWTH Aachen University, Aachen, Germany

Low temperature fuel cells require hydrogen of high purity for electricity production to avoid catalyst poisoning. To purify hydrogenrich flue gases from hydrocarbon steam reforming membrane shift reactors with a metal membranes may be utilized. A model of a tubular membrane shift reactor with a hydrogenseparating palladium membrane is modeled in the COMSOL Multiphysics® Chemical Engineering ...

Design and Simulation of Sensors to Detect Methanol

C. K. Subramaniam[1], Muthuraja[1]
[1]School of Electronics Engineering, VIT University, Vellore, Tamil Nadu, India

The Direct Methanol Fuel Cell (DMFC) working is dependent on the concentration of methanol in water before it is introduced in the anode. DMFC has a high energy density when generating electrical power from fuel, and is an attractive power source for portable devices. A fundamental limitation in DMFC technology is methanol crossover. In this process methanol diffuses from the anode through the ...

Optimization of Around-The-End Hydraulic Mixer Using COMSOL Multiphysics®

S. Mohammadighavam[1], B. Kløve[1]
[1]University of Oulu, Department of Process and Environmental Engineering ,Oulu, Finland

After rapid mixing of waste water and coagulant, an effective slow mixing during a reasonable retention time will cause to grow the size of flocs up which will settle out easily. Around-the-end hydraulic mixer with barriers is one of the efficient facilities that have been used in water treatment plants for this purpose. A uniform velocity gradient (G) is needed to achieve efficient mixing and ...

Quick Search