Technical Papers and Presentations

Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

A theoretical and experimental analysis of membrane bioreactors behavior in unsteady-state conditions

Curcio, S.
Department of Chemical Engineering and Materials University of Calabria, Rende (CS), ITALY

The behavior of hollow fiber membrane bioreactors operating in recycle configuration is characterized from both theoretical and experimental point of view. The theoretical model is based on the unsteady-state balance equations governing momentum and mass transfer within the regions that can be identified in a hollow fiber reacting system with immobilized enzyme, coupled to the unsteady-state mass ...

Study of the CO2 Transfer Rate in a Reacting Flow for the Refined Sodium Bicarbonate Production Process

C. Wylock[1], A. Larcy[1], P. Colinet[1], T. Cartage[2], and B. Haut[1]
[1]Université Libre de Bruxelles, Brussels, Belgium
[2]Solvay S.A., Brussels, Belgium

This work deals with the quantification of the CO2 transfer rate from a bubble to the surrounding liquid in a bubble column. A model is successfully developed using COMSOL Multiphysics. The validated model is used to study the enhancement influence of chemical reactions on the transfer rate. Moreover, the results of this study are compared with a classical 1-D approach and excellent comparison is ...

A Finite Element Analysis on the Modeling of Heat Release Rate, as Assessed by a Cone Calorimeter, of Char Forming Polycarbonate

D. Statler[1], and R. Gupta[2]
[1]Mid-Atlantic Technology, Research and Innovation Center, South Charleston, WV, USA
[2]Department of Chemical Engineering, West Virginia University, Morgantown, WV, USA

During the pyrolysis and combustion of polymers, heat is released and is typically measured with a cone calorimeter to better assess the polymer’s flammability. Modeling heat release rate, as assessed by cone calorimetry, has not been extensively studied for char-forming polymers, such as, polycarbonate. Here we determine the heat release rate with the help of a one-dimensional transient finite ...

Fundamental Three Dimensional Modeling and Parameter Estimation of a Diesel Oxidation Catalyst for Heavy Duty Trucks

A. Holmqvist[1] and C.U.I. Odenbrand[1]

[1]Department of Chemical Engineering, Faculty of Engineering, LTH, Lund University, Lund, Sweden

Mathematical optimization can be used as a computational engine to generate the best solution for a given problem in a systematic and efficient way. In the context of monolithic converter systems, the parameter estimation problem (or inverse problem) is solved using Partial Differential Equations (PDE)-based models of the physical system coupled with an optimization algorithm. These problems are ...

Acid-Base Reactions Enhancing Membrane Separation: Model Development and Implementation

C. Bayer[1], S. Stiefel[1], M. Follmann[1], and T. Melin[1]

[1]AVT Chemical Process Engineering, RWTH Aachen University, Aachen, Germany

Reactive extraction of organic acids from an aqueous solution to an alkaline stripping fluid is based on a selective barrier allowing permeation of non-polar molecules, which subsequently react with the stripping agent. The shift from the organic acid to its base induced by the chemical equilibrium enhances mass transfer inside the membrane’s porous substructure. A model of the porous layer ...

Pseudo 3-D Simulation of a Falling Film Microreactor

M. Al-Rawashdeh[1,2], V. Hessel[1,2], P. Löb[1], and F. Schönfeld[1]
[1]Institut für Mikrotechnik Mainz GmbH, Mainz, Germany
[2]Department of Chemical Engineering and
Chemistry, Eindhoven University of Technology, Eindhoven, Netherlands

Gas-liquid falling film microreactors carry out fast exothermic and mass transfer limited reactions. Since the major rate limiting steps occur on the liquid side, it is important to account for a realistic liquid film profile within the reactor simulation. Based on realistic channel geometry and liquid menisci profiles, we describe the liquid film thicknesses, flow velocities, species transport ...

Adaptive Control of Simulated Moving Bed Plants Using Comsol’s Simulink Interface

M. Fütterer
Institut für Automatisierungstechnik, Otto-von-Guericke Universität, Magdeburg, Germany

Preparative chromatography is an important separation method where the simulated moving bed (SMB) technology is an increasingly used separation process for binary mixtures. Several chromatographic columns are arranged in a ring where the feedings and drains are changed cyclically to maintain a continuous separation. For this reason, an adaptive controller is proposed to adjust the flow rates ...

Electric Field Analysis of a Green Rust Surface Treatment Tank for High/Super Alloys

H.K. Yang[1], S.C. Tseng[1]
[1]Institute of Mechanical Engineering, National Yunlin University of Science Technology, Taiwan

In order to perform rust surface treatment for stainless wires, we proposed an electrolyzing equipment to do so. It has the following advantages: safer, cheaper and less environmental pollution. To study the performance of the electrolyzing process, numerical simulation for electric fields will be conducted by using COMSOL Multiphysics software. Taguchi methods was also used to obtain better ...

A Study of Thermo-Fluid Behavior in Tubular Metal Hydride Beds in the Hydriding Process

S. Makridis[1], E.I. Gkanas[1], A. Ioannidou[2], E.S. Kikkinides[2], A.K. Stubos[3]
[1]Department of Mechanical Engineering, University of Western Macedonia, Kozani, Greece & Environmental Research Laboratory, Institute of Nuclear Technology and Radiation Protection, NCSR “Demokritos”, Athens, Greece
[2]Department of Mechanical Engineering, University of Western Macedonia, Kozani, Greece
[3]Environmental Research Laboratory, Institute of Nuclear Technology and Radiation Protection, NCSR “Demokritos”, Athens, Greece

Hydrogen, the most abundant element in the universe, has great potential as an energy source, and can be generated from renewable energy sources. We used COMSOL for the solution of the energy, mass and momentum balance equations that describe the hydrogen absorption and desorption procedure in the metal hydride compressor. Thermodynamic or engineering properties like the reaction enthalpy ??, ...

Kinetics and Plasma Modeling of Plasma Steam Reforming at Atmospheric Pressure

J.M. Cormier, F. Ouni, and A. Khacef
GREMI, Polytech’Orléans

Gliding discharges at atmospheric pressure were investigated in the GREMI laboratory for different applications such as syngas production from methane steam reforming. In our case, the kinetics could be described by using a simplified second order model in which the rate reaction coefficient is obtained from a linearization of parameters. Calculated and experimental data are presented ...

Quick Search