Quick Search

Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Multiscale Simulation of a Photocatalytic Reactor for Water Treatment - new

A. Cockx[1], R. Degrave[1], P. Schmitz[1]
[1]University of Toulouse, Toulouse, France

This study deals with the 3D modeling of a light photocatalytic textile. This process aims to decontaminate industrial effluents such as water with pesticides. The present study describes the implementation of a reactive transport model in a computational fluid dynamics model developed on a Representative Volume Element (RVE) of the textile, i.e. at the microscopic scale. The final ...

Numerical Simulation of Evaporation Processes in Electron Beam Welding - new

E. Salomatova[1], D. Trushnikov[1], V. Belenkiy[1], V. Tsaplin[1]
[1]Perm National Research Polytechnic University, Perm, Russia

In this paper describes an original method for indirect measurement of the vapor pressure and temperature in the keyhole in electron beam welding. This method is based on the determination of the concentration of chemical elements in the vapor above the welding zone. Taking into account these data model is built 2D diffusion processes with heat and mass transfer elements in the melt, which ...

Fluid Flow and Heat Transfer Characteristics in a Stirred Cell System for Crude Oil Fouling

M. Yang[1], A. Young[1], and B. Crittenden[1]

[1]Department of Chemical Engineering University of Bath, Bath, United Kingdom

A small batch stirred cell which is operated at temperatures up to 400 °C and pressures up to 30 bar is used to study fouling behaviors of selected crude oils. COMSOL Multiphysics package is used for the CFD (Computational Fluid Dynamics) and heat transfer modeling for this stirred cell system. The simulation results are validated against the measured temperature data at various axial ...

Reacting Flows in Industrial Duct-burners of a Heat Recovery Steam Generator

G. Petrone[1], G. Cammarata[1], S. Caggia[2], and M. Anastasi[2]
[1]Department of Industrial and Mechanical Engineering, University of Catania, Catania, Italy
[2]Engineering Maintenance - ISAB Energy Services, Priolo Gargallo, Italy

In this study, COMSOL Multiphysics is applied in order to simulate reacting flows for duct burner systems arranged in the post-firing section of a Heat Recovery Steam Generator of a combined cycle power plant. Two- and three-dimensional simulations are carried out in order to investigate on operative conditions mainly responsible of duct burners overheating. The results are obtained for several ...

Virtual Pharmacokinetic Model of the Human Eye - new

L. Murtomäki[1], S. Kotha[2]
[1]Aalto University, Greater Helsinki, Finland
[2]University Of Helsinki, Helsinki, Finland

There is a great need for an effective drug treatment of the posterior eye, as the major reason for visual disability in industrial countries is Age-related Macular Degeneration (AMD). In USA alone, there are almost 2 million people affected by AMD [1]. A virtual pharmacokinetic 3D model of the human eye is built to address this problem, using COMSOL Multiphysics® software, based on the Finite ...

Modeling of a Biogas Steam Reforming Reactor for Solid Oxide Fuel Cell Systems

F. Cipitì[1]
[1]CNR-ITAE, Institute of Advanced Technologies for Energy, Messina, Italy

A biogas steam reforming reactor has been developed in order to be integrated into a proof-of-concept SOFC system, able to operate with biogas produced in an industrial waste water treatment unit. A mathematical model, aimed at describing the performance of the reactor, has been developed. The reactor is simplified and modeled as a non-isothermal plug flow reactor. The reactor is fed with a total ...

Pseudo-3D Multiphysics Simulation of a Hydride Vapor Phase Epitaxy Reactor

M. Hackert-Oschätzchen[1], M. Penzel[1], P. Plänitz[2], A. Schubert[1][3]
[1]Chemnitz University of Technology, Chemnitz, Germany
[2]GWT-TUD, Dresden, Germany
[3]Fraunhofer Institute for Machine Tools and Forming Technology IWU, Chemnitz, Germany

Gallium nitride (GaN) and its related nitride alloys with special physical properties are in technical areas of high interest. The growing of gallium nitride boules on non-native sapphire or silicon carbide requires complicated mechanisms of defect reduction in the lattice structure. Thus the production of gallium nitride substrates is a challenge. Hydride Vapor Phase Epitaxy (HVPE) is a ...

Modeling Fluid-Induced Porous Scaffold Deformation

J. Podichetty Thribhuvan[1], S.V. Madihally[1]
[1]Oklahoma State University, Stillwater, OK, USA

Utilization of bioreactors to regenerate tissues outside the body has been intensely investigated in functional tissue engineering. Various studies have been performed using computational fluid dynamics (CFD) to understand fluid flow within bioreactors while assuming porous scaffold as a rigid structure. However, the physical and mechanical properties of most tissue engineering scaffolds suggest ...

An Approach to Modeling Vacuum Desorption - new

C. F. Gomez[1], R. Schunk[1], R. F. Coker[1], J. Knox[1]
[1]NASA Marshall Space Flight Center, Huntsville, AL, USA

The objective of this simulation effort is to develop a mathematical model of vacuum desorption on a POC (Proof of Concept) canister loaded with Zeolite 13X/5A . This canister contains a pelletized adsorption bed which is used to adsorb H2O and CO2. Once this bed is fully saturated with an equilibrium loading, desorption is then accomplished by reducing the pressure to near vacuum. This type of ...

Chromatographic Separation of Tröger’s Base in a Batch Column

A. Fayolas [1], M.G. Sanku[1], M. Pascoa[1], M. Xynou[1]
[1]KTH Royal Institute of Technology, Stockholm, Sweden

The objective of the study is to investigate the chiral separation of Tröger’s base enantiomers using batch chromatography. Because of its resolution, chromatography is often the preferred method for chiral separations. The separation of Tröger’s base is resolved by using the COMSOL Multiphysics® software. It is modeled by one dimension geometry, having the length of the column set and ...