Technical Papers and Presentations

Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Study of the CO2 Transfer Rate in a Reacting Flow for the Refined Sodium Bicarbonate Production Process

C. Wylock[1], A. Larcy[1], P. Colinet[1], T. Cartage[2], and B. Haut[1]
[1]Université Libre de Bruxelles, Brussels, Belgium
[2]Solvay S.A., Brussels, Belgium

This work deals with the quantification of the CO2 transfer rate from a bubble to the surrounding liquid in a bubble column. A model is successfully developed using COMSOL Multiphysics. The validated model is used to study the enhancement influence of chemical reactions on the transfer rate. Moreover, the results of this study are compared with a classical 1-D approach and excellent comparison is ...

Finite Element Analysis of Induced Electroosmotic Flow in Brain Tissue and Application to ex vivo Determination of Enzyme Activity

Y. Ou[1], A. Rupert[1], M. Sandberg[2], S. Weber[1]
[1]University of Pittsburgh, Pittsburgh, PA, USA
[2]University of Gothenburg, Gothenburg, Sweden

Ectopeptidases are commonly accepted to be a means of clearing active peptides. However, studies have shown that they can also regulate peptide activity. We have developed a technique of electrokinetic push-pull perfusion (Ek-PPP, Figure 1) to examine this largely unexplored mechanism of modulation of peptide function. We push the neuropeptide galanin through organotypic hippocampal slice ...

Coupled Palaehydrogeological Microbial and Geochemical Reactive Transport Model of the Olkiluoto Site (Finland)

P. Trinchero[1], M. Luna[1], J. Molinero[1], G. Román-Ross[1], F. Maia[1], A. Nardi[1], J. Löfman[2], P. Pitkänen[3], L. Koskinen[3]
[1]Amphos 21 Consulting, Barcelona, Spain
[2]VTT Energy, Finland
[3]Posiva Oy, Olkiluoto, Finland

Olkiluoto at Eurajoki has been selected as the final repository site for spent nuclear waste in Finland. This area has been affected, at regional scale, by land-uplift processes related to the ice withdrawal. These events have resulted in a complex and stratified heterogeneous hydrochemical system. The objective of this work was to develop a robust paleohydrogeological reactive transport (PRT) ...

Improving the Sensoring of PEM Fuel Cell by Numerical Techniques - new

S. Skoda[1], E. Robalinho[2], E. F. Cunha[1], M. Linardi[1]
[1]Instituto de Pesquisas Energéticas e Nucleares - IPEN/CNEN-SP, São Paulo, SP, Brazil
[2]Universidade Nove de Julho - UNINOVE, São Paulo, SP, Brazil

The use of numerical techniques in PEM fuel cell sensoring represents an advantage of project engineering, reducing the costs and accelerating the manufacturing of prototypes. In this work some numerical responses are shown, relating to numerical sensoring of water and oxygen mole fractions at cathode of a 5 cm² of geometric area PEM fuel cell. The need to recognize a geometric figure of merit ...

Fluid Flow and Heat Transfer Characteristics in a Stirred Cell System for Crude Oil Fouling

M. Yang[1], A. Young[1], and B. Crittenden[1]

[1]Department of Chemical Engineering University of Bath, Bath, United Kingdom

A small batch stirred cell which is operated at temperatures up to 400 °C and pressures up to 30 bar is used to study fouling behaviors of selected crude oils. COMSOL Multiphysics package is used for the CFD (Computational Fluid Dynamics) and heat transfer modeling for this stirred cell system. The simulation results are validated against the measured temperature data at various axial ...

Combustion of Lean Methane in a Catalytic Flow Reversal Reactor

C. Devals[1], A. Fuxman[2], F. Bertrand,[1], J.F. Forbes[2], and R.E. Hayes[2]
[1] École Polytechnique de Montréal,
[2] University of Alberta

The combustion of lean methane in a catalytic flow reversal reactor (CFRR) is studied using COMSOL Multiphysics and a 2D continuum model. This model is based on mole and energy balance equations for the solid (the inert and catalytic sections of the reactor) and the fluid phases. The results show the impact on the methane conversion and the maximum temperature in the reactor of key ...

Using COMSOL for Studying the Occurrence of a Constant-shaped Concentration Front in the Retention of Gaseous Pollutants by Adsorption Columns

A. Joly[1], V. Volpert[1], and A. Perrard[2]
[1] Université de Lyon
[2] Institut de Recherches sur la Catalyse, Lyon

Various models, based on mass transfer and different isothermal adsorption equilibrium laws, are developed using COMSOL Multiphysics. These isotherms are representative of the adsorption of various pollutant-adsorbent systems frequently found in decontamination processes. Consequences on breakthrough curves are examined and possible applications to decontamination processes are discussed.

Modeling of an Operando Catalytic Reactor Operated in the Concentration Pulse Mode

S. Pietrzyk, A. Y. Khodakov, and C. Dujardin
Unité Catalyse et Chimie du Solide, Université des Sciences et Technologies de Lille, Ecole Nationale Supérieure de Chimie de Lille, Ecole Centrale de Lille, Villeneuve d’Ascq, France

Operando reactors are used to study, qualitatively and/or quantitatively, active sites of the catalyst and the intermediates of a catalytic heterogeneous chemical reaction, while the reaction is being carried out ("in situ, on-line catalysis studies"). In the present work, an operando reactor using transmission infra-red (IR) absorption spectroscopy has been used to study the Fischer-Tropsch ...

A Finite Element Analysis on the Modeling of Heat Release Rate, as Assessed by a Cone Calorimeter, of Char Forming Polycarbonate

D. Statler[1], and R. Gupta[2]
[1]Mid-Atlantic Technology, Research and Innovation Center, South Charleston, WV, USA
[2]Department of Chemical Engineering, West Virginia University, Morgantown, WV, USA

During the pyrolysis and combustion of polymers, heat is released and is typically measured with a cone calorimeter to better assess the polymer’s flammability. Modeling heat release rate, as assessed by cone calorimetry, has not been extensively studied for char-forming polymers, such as, polycarbonate. Here we determine the heat release rate with the help of a one-dimensional transient finite ...

Modeling the Chemical Decomposition of Sodium Carbonate Peroxyhydrate

M. Brundu[1], V. Guida[1]
[1]Procter & Gamble Italia, Pomezia, Roma, Italy

The challenge with the use of Sodium Carbonate Peroxyhydrate (Na2CO3*1.5H2O2) as a bleach source in dry detergent formulations is its lower stability in comparison with other materials, and the risk of quality losses of the product over the shelf life. The issue can be solved with the understanding and modeling of the decomposition mechanism of the powder. It is well known that the decomposition ...

Quick Search