Technical Papers and Presentations

Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

On The Purification Of Waste Waters Using Multi-Bore Filters: Simulation Of A Long-Term Filtration Stage

I. Borsi
Dipartimento di Matematica U. Dini, Universita' di Firenze, Italy

We present the progress of the simulation activity we are carrying out within the PURIFAST LIFE+ project. We first present the model we formulated to describe the macroscopic effects of the filtration process taking place in a multi-bore filter, focusing on the fouling phenomenon. In membrane-based filters the fouling phenomenon is the major reason of a decreasing filtration efficiency. ...

Using a Level-Set Model to Estimate Dwell Time in a Vacuum Dewatering Process for Paper

K. Rezk[1]
[1]Department of Energy, Environmental and Building Technology, Karlstad University, Kronoparken, Sweden

Water removal during paper manufacturing is an intensive energy process. The dewatering process generally consists of four stages in which the first three stages, water is removed mechanically through vacuum pulses and pressing.The fourth stage involve thermal drying. The vacuum dewatering process has been considered in this work. A laminar level-set method has been applied in order to capture ...

Numerical Simulation of an Induction Stirred Ladle

M. Pal1, S. Kholmatov2 and P. Jönsson2
1Centre-University of Wales, Swansea
2Royal Institute of Technology, Stockholm, Sweden

In this paper a simulation model of a laboratory scaled induction ladle is presented. The simulation model so developed will make it feasible to receive information about the fluid flow phenomenon and thermal heat transfer. In order to perform the numerical simulation of the furnace, physical processes involved are expressed as a coupled-nonlinear system of partial differential equations ...

Assessment of Anterior Spinal Artery Blood Flow following Spinal Cord Injury

M. Alshareef[1], A. Alshareef[2], V. Krishna[3], M. Kindy[3], T. Shazly[4]
[1]College of Medicine, Medical University of South Carolina, Charleston, SC, USA
[2]Department of Biomedical Engineering, Duke University, Durham, NC, USA
[3]Department of Neurosurgery, Medical University of South Carolina, Charleston, SC, USA
[4]Department of Mechanical Engineering, University of South Carolina, Columbia, SC, USA

The incidence of spinal cord injury (SCI) in the US is approximately 12,000 individuals annually, due to various forms of trauma and disease. Diminished flow over a prolonged period of time can cause permanent spinal damage. We constructed a 3D finite element model of the spinal cord to examine the role of compressive loading on spinal blood flow. It was found that the type of forces on the ...

Modelling of the Wool Textile Finishing Processes

M. Giansetti[1], A. Pezzin[1], S. Sicardi[1], G. Rovero[1]
[1]Politecnico di Torino, Torino, Italy

Within wool textile industries, a very important role is played by the so-called finishing processes, in which the textile substrate undergoes steam treatments to achieve the desired level of stabilisation and appearance. Process parameters, namely temperature and moisture content, are known only at the beginning of the process but not in the textile material being treated, where the actual ...

Simulation of the Fluid Dynamics in an Active Liquid Heat Sink for CPU Cooling System

S.-H. Wang, S. Melendez, M. Gomez
Micro and Precision Manufacturing Center, Kun-Shan University of Technology, Taiwan

This study numerically investigates the fluid dynamics in an Active-Liquid-Heat-Sink (ALHS) for a computer microprocessor cooling system. Principal concepts, basic design, and the integration of the ALHS technology into an internal CPU liquid cooling system are presented. Basic assumptions and numerical methods, especially for rotating machinery in fluid dynamics, are discussed in detail. From ...

Effects of Shear-thinning and Elasticity in Flow around A Sphere in A Cylindrical Tube

D. Song[1], R.K. Gupta[1], and R.P. Chhabra[2]
[1]West Virginia University, Morgantown, WV, USA
[2]Indian Institute of Technology, Kanpur, India

A sphere sedimenting in a cylindrical tube filled with non-Newtonian fluids, including purely viscous and viscoelastic type, is of both practical and fundamental interest. To investigate the effects of shear-thinning and elasticity, four representative constitutive equations are adopted, Newtonian, Carreau, Oldroyd-B and Phan-Thien-Tanner (PTT) models. There is good agreement between our ...

Thermo-Fluid Dynamics FEM Simulation of Advanced Water Cold Plates for Power Electronics

N. Delmonte[1], F. Giuliani[1], P. Cova[1]
[1]Dipartimento di Ingegneria dell'Informazione, Università degli Studi di Parma, Parma, Italy

Introduction: Power electronic converters such as those for High Energy Physics Experiments (HEPEs) must operate in thermally hostile environment. Heat generated by electronics components must be conveniently dissipated to ensure electrical performances and improve reliability. Due to the high power density, the presence of closed environments, and the requirement of non-thermal interaction with ...

Numerical Modeling of a Microtubular Solid Oxide Fuel Cell Using COMSOL Multiphysics®

P. Pianko-Oprych[1], E. Kasilova[1], Z. Jaworski[1]
[1]West Pomeranian University of Technology, Faculty of Chemical Technology and Engineering, Szczecin, Poland

Micro-tubular Solid Oxide Fuel Cells (mSOFC) are attracting more and more interest as new generation of energy conversion devices. Although commercial applications still suffer from high costs, there is a need for further improvement of the cell performance, durability and start-up. To resolve those challenges, knowledge of the distributions of species concentration, temperature and current ...

Solution of a Scalar Convection-diffusion Equation using FEMLAB

Yazdani, A., Shojai, L.
Department of Chemical Engineering, Loughborough University, Loughborough, UK

A steady scalar convection-diffusion problem has been studied for one and two dimensional cases. A FEMLAB 3.1 solution has been presented for the problems, unique features and illustrations of the software have been used and results have been tested against an analytic solution.

Quick Search