Technical Papers and Presentations

Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

The Use of CFD Simulations in Learning Fluid Mechanics at the Undergraduate Level

Marc K. Smith
Professor of Mechanical Engineering, Georgia Institute of Technology

Simple, accurate CFD simulations using COMSOL Multiphysics are used in a senior-level undergraduate course as a means to explore a number of fluid flows with the intent of developing a deep understanding of the underlying fluid mechanical mechanisms involved in the flows. Students also learn about the finite element method, how to properly pose the underlying mathematical model for the fluid ...

Indoor Air Quality Modeling

D. Pepper
University of Nevada, Las Vegas

In this presentation we consider the modeling of indoor air quality, and pollutant transport. Today's aspects of indoor air quality unfortunately must include the potential risk of an attack with biological weapons. In this presentation, we illustrate the effect of such an attack. In the present work, we also present numerical results for indoor air quality for a specific building, namely ...

Coupled Electric-Thermal-Fluid Analysis of High Voltage Bushing

G. Eriksson[1]
[1]ABB, Corporate Research, Västerås, Sweden

Modern power transmission systems are in general designed to operate at high voltages in order to reduce resistive losses generated by high currents. This, however, tends to increase the risk for dielectric breakdown or flashovers if the equipment is not properly designed to withstand the stress. The present work illustrates how multiphysics simulations can be used to analyze and predict the ...

Simulation of the Fluid Dynamics in an Active Liquid Heat Sink for CPU Cooling System

S.-H. Wang, S. Melendez, M. Gomez
Micro and Precision Manufacturing Center, Kun-Shan University of Technology, Taiwan

This study numerically investigates the fluid dynamics in an Active-Liquid-Heat-Sink (ALHS) for a computer microprocessor cooling system. Principal concepts, basic design, and the integration of the ALHS technology into an internal CPU liquid cooling system are presented. Basic assumptions and numerical methods, especially for rotating machinery in fluid dynamics, are discussed in detail. From ...

Flow Modeling in a Flat Membrane Module

B. Balannec1, J. M. Gozálvez-Zafrilla2, D. Delaunay1, and M. Rabiller-Baudry1
1UMR - "Sciences Chimiques de Rennes", Université de Rennes, Rennes, France
2Departamento de Ingeniería Química y Nuclear, Universidad Politécnica de Valencia, Valencia, Spain

A CFD calculation of the complex three dimensional flow in a flat membrane module (Rayflow X100, Orelis- Novasep) was made under the conditions of a typical fouling study in order to compare velocity distribution to fouling deposit (with charcoal). The flow was turbulent in the inlet/outlet pipes of the module and laminar in the channel containing the membrane. The local Reynolds number was ...

Optimization of Jet Mixer Geometry and Mixing Studies - new

A. Egedy[1], B. Molnar[1], T. Varga[1], T. Chován[1]
[1]Department of Process Engineering, University of Pannonia, Veszprém, Hungary

The primary aim of using jet as mixer, like in case of other mixing devices, is to increase the heat and mass transfer between the phases. Beside the injection position the geometry of the jet mixer and the injection nozzle has a major effect on the injection. In our study COMSOL Multiphysics software was used to carry out the experimental and simulation of the different jet geometries. The jet ...

3-D COMSOL Analysis of Extruder Dies

E. Solomon[1] and V. Mathew[1]
[1]Arcada University of Applied Sciences, Espoo, Finland

Three-dimensional flow analysis was performed by using COMSOL Multiphysics Chemical Engineering Module for the purpose of analyzing the flow properties and finding out the operating points of a test domain. Using material property table for an exemplary melt of LDPE (Low-Density Polyethylene), the logarithmic viscosity-shear rate graph was plotted and fitted to the 4–constant modified Carreau ...

Numerical Simulations of Thixotropic Fluids

P. Dantan[1], and M. Faye[2]
[1] Université Paris7 Denis Diderot
[2] Université Paris11

In this paper, we introduce a kinetic equation coupled with the Navier-Stokes equations in COMSOL Multiphysics in order to simulate internal structural changes of a flowing complex fluid. Two physical applications are considered, the starting of blood flow in a stenosis and a simulation of a laboratory rheometric set-up. Results show good agreement with the experiments' well known ...

Bubble Growth Simulation in a Liquid Supersaturated by Gas

V.K. Sinha, S. Ravi, and C. Thiagarajan
GE Global Research, Bangalore

This paper investigates a critical growth aspect of supersaturated polymer porous materials, where the multiphysics has been addressed through using COMSOL Multiphysics. The trend predicted by the models agree with observed experimental extrusion results.

Coupling Heat Transfer in Heat Pipe Arrays with Subsurface Porous Media Flow for Long Time Predictions of Solar Rechargeable Geothermal Systems

P. Oberdorfer[1], R. Hu[1], M. Azizur Rahman[1], E. Holzbecher[1], M. Sauter[1], P. Pärisch[2]
[1]Applied Geology, Geoscience Centre, University of Göttingen, Göttingen, Germany
[2]Institute for Solar Energy Research Hameln/Emmerthal (ISFH), Emmerthal, Germany

An increased share of renewable energies is regarded as an integral part of a strategy towards a sustainable future. With regard to the heat supply sector this may be achieved using solar thermal collectors or heat pump systems with borehole heat exchangers. During the last years solar thermal and geothermal systems have generally been installed separately. Now, several proposals are discussed in ...

Quick Search