Technical Papers and Presentations

Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Two-Phase Modeling of Gravity Drainage of Bitumen from Tar Sand Using In-Situ RF Electrical Heating

A. Hassanzadeh
Pyrophase Inc., Chicago, IL, USA

In-situ electrical heating technologies are among the most recent technologies used for bitumen recovery from tar sand and oil shale. These technologies have limited environmental impact because there is little disturbance of the land, and water and solvents are not used. Two-phase movement of bitumen and air in tar sand porous deposit is modeled using COMSOL Multiphysics. A system of non-linear ...

Thermal and Fluid-dynamical Optimisation of Passengers Comfort in a Touring Bus Cabin

G. Petrone[1], G. Fichera[2], and M. Scionti[1]
[1]Bus-Engineering S.r.l., Catania, Italy
[2]Department of Industrial and Mechanical Engineering, University of Catania, Catania, Italy

Innovations in air-conditioning and other forms of cooling or ventilation can be viewed as technological solutions improving environmental conditions that are beneficial for human health, comfort and productivity. This study deals with a thermal and fluid-dynamics investigation of passenger comfort in a touring bus cabin. COMSOL Multiphysics® is used as a powerful design and optimization tool ...

COMSOL Multiphysics for Efficient Solution of a Transient Reaction-Diffusion System with Fast Reaction

M.K. Gobbert[1], A. Churchill[1], G. Wang[1], and T.I. Seidman[1]
[1]Department of Mathematics and Statistics, University of Maryland, Baltimore County, Baltimore, Maryland, USA

A reaction between chemical species is modeled by a particular reaction pathway, in which one reaction is very fast relative to the other one. The diffusion controlled reactions of these species together with a reaction intermediate are described by a system of three transient reaction diffusion equations over a two-dimensional spatial domain. In the asymptotic limit of the reaction parameter ...

Transport Phenomena of Bubbles in a High Viscous Fluid

F. Pigeonneau
CNRS/Saint-Gobain, France

Dr. Franck Pigeonneau is currently working in the joint laboratory between the Centre National de la Recherche Scientifique (CNRS) and the company Saint-Gobain. He received his Ph. D. in 1998 from the University Pierre et Marie Curie (Paris, France). His main research activities are devoted to the transport phenomena in high viscous fluids relevant for glass melting processes. He is using COMSOL ...

Flare System Pressure Drop Calculations Using COMSOL

K. Alhazza[1], B. Albusairi[1], H. Kamal[1], H.M.S. Lababiedi[1], A.A. Abbas[2]
[1]Kuwait University, Kuwait City, Kuwait
[2]Petrochemical Industries Company, Kuwait City, Kuwait

COMSOL Multiphysics has been used to validate and check the design of a header transporting ammonia gases released from pressure safety valves (PSVs) to the tip of the flare. The header is part of a dedicated flaring system to contain emissions from ammonia storage tanks. The two main challenges are the low relief pressure and high capacity of the system. Another difficulty is the high relief ...

Ventilation System of a Microwave Assisted Drying Kiln

A.-G. Ghiaus[1], M.-A. Istrate[1], A. Georgescu[1]
[1]Technical University of Civil Engineering, Bucharest, Romania

The paper presents the analysis and optimization of the ventilation system inside of a drying lumber kiln. As with any part of the manufacturing process, improper drying techniques cause quality degradation and considerable amount of energy loose. The improvement and optimization of air distribution systems in drying kilns contributes to the preservation of the wood quality. The performance of ...

Multiphysics Modeling of a Metal Foam

B. Chinè [1][3], M. Monno[2]
[1]Laboratorio MUSP, Macchine Utensili e Sistemi di Produzione, Piacenza, Italy
[2]Politecnico di Milano, Dipartimento di Meccanica, Milano, Italy
[3]Instituto Tecnologico de Costa Rica, Cartago, Costa Rica

Introduction: In metal foams production, nucleated gas bubbles expand in a heated metal in a mold, then the foam cool and solidify. Thereby energy, mass and momentum transfer mechanisms are present simultaneously in the system and must be taken into account. Metal foam (Figure 1) can be obtained by foaming a precursor, i.e. a mixing of aluminum (Al) powders with the blowing agent TiH2, placing it ...

Application of Kelvin's Inversion Theorem to the Solution of Laplace's Equation Over a Domain That Includes the Unbounded Exterior of a Sphere

J. Russell[1]
[1]Florida Institute of Technology, Melbourne, FL, USA

In simulating physical systems modeled as solutions of partial differential equations over an unbounded domain, a challenge arises owing to the impossibility to cover an unbounded domain with a mesh. A classical problem in fluid dynamics, a solid sphere of radius a_s is submerged in a tank of water (at rest) of much larger size. The water is disturbed by the sphere’s sudden acceleration in the ...

Fluid-Thermal Analysis of an Inverter with Air Cooling

R. V. Arimilli[1], A. H. Nejad[1], K. Ekici[1]
[1]The University of Tennessee, Knoxville, TN, USA

A new simple air-cooled inverter design is numerically investigated using COMSOL Multiphysics® software. The thermal-fluid analysis is based on a three-dimensional conjugate heat transfer model in which the flow field is assumed to be laminar. A rigorous mesh convergence was performed to ensure that the overall energy balance error is within engineering accuracy while the computational cost is ...

Modelling of a Single Cardiomyocyte Interaction with a Microcantilever Using COMSOL Multiphysics®

I. Banerjee[1]
[1]Tampere University of Technology, Tampere, Finland

: One of the most commonly used techniques for quantification of beating forces exerted by cardiomyocytes is culturing them on a bed of vertical microcantilevers or microposts. The position of the microcantilevers is observed through advanced imaging techniques and the displacements are observed over a period of time. The stiffness of the microcantilevers is known and thus the force can be ...

Quick Search