Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Validation of DNS Techniques for Dynamic Combined Indoor Air and Constructions Simulations Using an Experimental Scale Model

T. van Goch, and A. van Schijndel
Eindhoven University of Technology, Eindhoven, Netherlands

This paper presents a study on the application of Direct Numerical Solving (DNS) techniques using an experimental scale model. COMSOL Multiphysics is promising in solving dynamic heat and air transport. The experiments can be extremely useful as benchmark for CFD codes.

Particle Tracing: Analysis of Airborne Infection Risks in Operating Theatres

P. Apell[1], S. Hjalmarsson[1], T. Lindberg[1], I. Wernström[1], Y. Tarakonov[1], A. Erichsen Andersson[2], M. Karlsteen[1]
[1]Department of Applied Physics, Chalmers University of Technology, Göteborg, Sweden
[2]Sahlgrenska University Hospital, Department of Anesthesia, Surgery and Intensive Care, Göteborg, Sweden

Patients undergoing surgery are sensitive to infections. The operation staff may spread 10^4 particles per person per minute, of which ten percent are presumed bacteria-carrying. We visualize the influence of the personnel on the air and particle flows for the two most common ventilation systems in Swedish hospitals using Comsol Multiphysics with particle tracing.. The Laminar Air flow ...

Development of a New Blade Profile for a Vertical Axis Wind Turbine

S. Yoshioka[1]
[1]Ritsumeikan University, Shiga, Japan

The vertical axis wind turbine design depicted in (Fig.1) is widely considered a wind turbine of a wind power generation system because it can be easily miniaturized, it generates low noise, and it rotates regardless of wind direction. The vertical axis wind turbine has, however, low rotation performance when compared with that of a horizontal axis wind turbine. Therefore, we need to improve the ...

Modeling of Energy Efficient Continuous Sterilisation of ABP from Food Wastes

S. Dalrymple[1], R. Heslop[1]
[1]C-Tech Innovation Ltd. , Capenhurst, United Kingdom

Ohmic heating is a volumetric heating technology which can effectively process almost any pumpable fluid with extremely high energy efficiency (>95%). This is particularly useful for very thick fluids, those that burn on to hot surfaces and those with high solids content which would cause difficulties for conventional heating techniques. Processing of animal by-products (ABP) faces all these ...

Gravity-Driven Film Flow: Design of Bottom Topography

C. Heining[1] and N. Aksel[1]

[1]Applied Mechanics and Fluid Dynamics, University of Bayreuth, Bayreuth, Germany

We study the gravity-driven film flow of a Newtonian liquid down an inclined plane. Many applications such as heat- and mass exchangers and evaporators or film coaters require undulated or rippled bottom topographies. In these cases, the interplay of gravity, surface tension and inertia leads to a response of the interface which furthermore strongly depends on the shape of the bottom topography. ...

Tilted Micro Air Jet for Flow Control

J. Malapert[1], R. Yahiaoui[1], R. Zeggari[1], and J-F. Manceau[1]
[1]Institut Femto-St, Université de Franche-Comté Besançon, France

In this paper, we present an interesting method to microfabricate a tilted micro air jet generator. We used the well-know Deep Reactive Ion Etching (DRIE) technique in order to realize in a silicon substrate a double side etching. For aircraft and cars, micro air jets will take an important place for fluid control. Micro air jets are characterized by their speed, frequency and tilt. Usually, ...

CFD Analysis of Argon Cell for Pyrochemical Processing

S. Agarwal[1], S. P. Ruhela[1], B. Muralidharan[1], B. P. Reddy[2], B. K. Sharma[1], K. Nagarajan[2], C. A. Babu[3], and K. K. Rajan[1]
[1]Fast Reactor Technology Group, Indira Gandhi Centre for Atomic Research
[2]Chemistry Group, Indira Gandhi Centre for Atomic Research
[3]HBNI & CDG, Indira Gandhi Centre for Atomic Research

An inactive Demonstration facility for the integrated pyroprocess, named High temperature Electrorefining (HTER) facility is in developing stage. This facility is equipped with several types of pyroprocess equipment such as electro-refiner, salt and cadmium distillation equipment, scraping equipment and tilting equipment inside an Argon cell. To operate the argon cell safely, all generated ...

Flare System Pressure Drop Calculations Using COMSOL

K. Alhazza[1], B. Albusairi[1], H. Kamal[1], H.M.S. Lababiedi[1], A.A. Abbas[2]
[1]Kuwait University, Kuwait City, Kuwait
[2]Petrochemical Industries Company, Kuwait City, Kuwait

COMSOL Multiphysics has been used to validate and check the design of a header transporting ammonia gases released from pressure safety valves (PSVs) to the tip of the flare. The header is part of a dedicated flaring system to contain emissions from ammonia storage tanks. The two main challenges are the low relief pressure and high capacity of the system. Another difficulty is the high relief ...

Numerical Analysis of Conjugate Heat Transfer in Foams

N. Bianco[1], R. Capuano[1], W.K.S. Chiu[2], S. Cunsolo[1], V. Naso[1], M. Oliviero[1]
[1]DETEC, Università degli Studi Federico II, Napoli, Italy
[2]Department of Mechanical Engineering, University of Connecticut, Storrs, CT, USA

A conjugate conductive-convective-radiative discrete model useful for the study and the simulation of heat transfer in a ceramic or metallic foam is presented. A Generation-based Technique is used for the foam representation, using the Weaire-Phelan structure and heat transfer is studied using the COMSOL Multiphysics. The computational domain is made up by a single cell and a fictitious inlet ...

Computationally Assisted Design and Experimental Validation of a Novel ‘Flow-Focussed’ Microfluidics Chip for Generating Monodisperse Microbubbles

M. Conneely[1], V. Hegde[2], H. Rolfsnes[1], A. Mason[2], D. McLean[1], C. Main[1], F.J.D. Smith[2], W.H.I. McLean[2], P.A. Campbell[1]
[1]Carnegie Physics Laboratory, University of Dundee, Dundee, Scotland, United Kingdom
[2]Division of Molecular Medicine, University of Dundee, Dundee, Scotland, United Kingdom

Whilst initially developed as a diagnostic aid to improve echogenicity in ultrasound imaging, gas-filled lipid microbubbles are now emerging as a next generation \'theranostic\' tool in the medical arena. Here, their therapeutic potential has now been realized through their unique capability to deliver molecular species such as drugs and genes by means of disrupting the cell membrane in response ...