Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Design & Simulation of Various Shapes of Cantilever Beam for Piezoelectric Power Generator

P. Graak [1], S. Kaur [1], A. Gupta [1], P. Chhabra [1], D. Kumar [1], A. Shetty [2]
[1] Kurukshetra University, Kurukshetra, Haryana, India
[2] Indian Institute of Science, Bengaluru, Karnataka, India

The ambient vibrations can be of great promise for harvesting energy initially at small scale to use for micro and nano scale devices. Such vibrations converted to electrical energy by piezoelectric transducer due to their major significance. Various research journals have introduced the phenomenon of energy optimization to increase the generated power and used directly for application like ...

COMSOL Multiphysics Simulations of Microfluidic Systems for Biomedical Applications

M. Dimaki, J. Moresco Lange, P. Vazquez, P. Shah, F. Okkels, and W. Svendsen
Department of Micro- and Nanotechnology, Technical University of Denmark, Lyngby, Denmark

The need for fast, easy and cost-effective analysis of blood samples as well as our understanding of the functionality of cells and neurons are two rather pressing issues in the modern world. Both of these can be addressed by functional lab-on-a-chip systems, which have been designed and optimized for specific analyses. This paper deals with the design of several different systems for cell ...

Design and Analysis of 3D Capacitive Accelerometer for Automotive Applications

G. Vijila, S. Vijayakumar, M. Alagappan, and A. Gupta
PSG College of Technology
Tamil Nadu, India

This paper projects a novel 3D capacitive accelerometer design to identify a severe accident and initiate airbag deployment systems. It will detect the rapid negative acceleration of the vehicle to avoid the severity of the collision. Such a device demands excellent performance in terms of sensitivity, noise immunity, linearity, bias and scale factor stability over time and environmental ...

Design and Simulation of MEMS based Micro Pressure Sensor

P. Acharya[1]
[1]B.V.Bhoomaraddi College of Engineerring & Technology, Hubli, Karnataka, India

The world is getting digitalized, demands for new and emerging technologies have reached its peak, and customer demands have taken a U-turn. To cope with such unique requirements many systems and system devices are into the market and one of such enhancing technology is MEMS. MEMS are systems of small size, light weight, enhanced performance and reliability finding widest of applications in ...

Study of Thermal Behavior of Thermoset Polymer Matrix Filled with Micro and Nanoparticles

B. Reine[1], J. Di-Tomaso[2], G. Dusserre[1], P. Olivier[1]
[1]Université de Toulouse, UPS, INSA, Mines Albi, ISAE, ICA, IUT, Dept. GMP, Toulouse Cedex, France
[2]RESCOLL - Société de Recherche, Pessac Cedex, France

This paper addresses the study of thermal behavior of thermoset polymer matrix filled with microparticles. A numerical model was developed with COMSOL Multiphysics to get a random spatial distribution of fillers in a representative volume element (RVE). This model was then compared to an analytical reference model (Hamilton model) and experimental results. This comparison highlights a good ...

Simulation of Cellular Traction Force Based Deflection of PDMS Micropillars - new

J. Wala[1], D. Maji[1], S. Dhara[1], S. Das[1]
[1]Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India

Cells are complex entities which not only passively sense external stimuli (viz. chemical, optical or mechanical) but also interact with extracellular matrix (ECM) by regulating cellular behavior such as growth, proliferation, migration, etc. Monitoring cell growth and migration of adherent cells becomes a crucial factor in determining cell-cell and cell-substrate interaction, important for ...

Simulation of a Dual Axis MEMS Seismometer For Building Monitoring System

M. A. Shah [1], F. Iqbal [1], B. L. Lee [1],
[1] Korea University of Technology and Education, Cheonan, Chungcheong, South Korea

A dual axis MEMS seismometer targeted for building monitoring system has been simulated for a full scale of ±5g acceleration. The design uses the capacitive effect for vibration sensing. This comb drive capacitive MEMS seismometer consists of 8 springs with two proof masses. The device is very low cross axis sensitive (almost negligible cross axis error). The cross axis sensitivity of x-axis is ...

Simulation of a Buckled Cantilever Plate with Thermal Bimorph Actuators

A. Arevalo [1], D. Conchouso [1], D. Castro [1], M. Diaz [2], I. G. Foulds [3],
[1] CEMSE Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
[2] Physical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
[3] University of British Columbia, Vancouver, BC, Canada

INTRODUCTION: Micro Electro Mechanical Systems (MEMS) are fabricated with an in-plane fabrication technology. Out-of-plane structures can be designed to be assembled to provide thermal and electrical isolation from the substrate [1 -3]. These isolations can potentially improve the performance of a range of MEMS devices by decreasing any unwanted coupling effects or parasitic losses from the ...

MEMS Resonator for RF Applications

V. Harshey
Visvesvaraya National Institute of Technology
Maharashtra, India

Vibrating mechanical tank components, such as quartz crystals and surface acoustic wave (SAW) resonators with Q’s in the range of 10e3–10e6, are widely used to implement high-Q oscillators and band pass filters in the radio frequency (RF) and intermediate frequency (IF) stages of communication transceivers. This paper will discuss designing of resonator and effects of various parameter on the ...

COMSOL Multiphysics® Software Simulation of a Dual-axis MEMS Accelerometer with T-Shaped Beams

C. Zheng [1], X. Xiong [1], J. Hu [2]
[1] Department of Electrical and Computer Engineering, University of Bridgeport, Bridgeport, CT, USA
[2] Department of Mechanical Engineering, University of Bridgeport, Bridgeport, CT, USA

Introduction: Inertial navigation requires acceleration measurement along all three degree-of-freedoms. Most accelerometers are designed to measure acceleration along a single sensitive direction. For complete inertial sensing, a move effective accelerometer which can sense acceleration along multiple axes is needed. In this research, a dual-axis MEMS (Microelectromechanical Systems) ...