Technical Papers and Presentations

Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Improving Detection Sensitivity for Nanoscale Targets Through Combined Photonic and Plasmonic Techniques

G. Zhang[1], Y. Zhao[1]
[1]Clemson University, Clemson, SC, USA

Photonic technique such as the whispering gallery mode (WGM) is often used for detection of small particles like bacteria and viruses. It offers good detection sensitivity and is advantageous over other detection techniques because the detection can be label free. However, the detection sensitivity may not be sufficient when the size of the detection target is in nanoscale. To change this, we use ...

Design and Analysis of Micro-Heaters for Temperature Optimization using COMSOL Multiphysics for MEMS Based Gas Sensor

V. S. Selvakumar[1], L. Sujatha[1]
[1]Rajalakhmi Engineering College, Chennai, Tamil Nadu, India

Micro-Heaters are the key components in sub-miniature micro-sensors, especially in gas sensors. The metal oxide gas sensors utilize the properties of surface adsorption to detect changes in resistance as a function of varying concentration of different gases [5]. To detect the resistive changes, the heater temperature must be in the requisite temperature range over the heater area. Hence the ...

Heat Transfer in Crossflow Heat Exchangers for Application with Microreactors - new

R. Pryor[1]
[1]Pryor Knowledge Systems, Inc., Bloomfield Hills, MI, USA

This paper explores methods of improving the heat transfer coefficient in a crossflow heat exchanger as would be employed in conjunction with an experimental or production microreactor. This derivation of the Cross-Flow Heat Exchanger from the COMSOL Multiphysics® software Model Library modifies the substrate geometry by adding two additional layers and uses the material copper in certain ...

Multiphysics Simulation of a Self-heating Paraffin Membrane Microactuator

P. Lazarou[1], C. Rotinat[1]
[1]CEA LIST/DIASI/LRI, Paris, France

A grand variety of microactuator technologies and demonstrators has been introduced during the last years. Of particular interest are the microactuators based on phase change materials and especially paraffin wax, which can volumetrically expand up to 15%, providing high force actuation. The object of this study is the numerical validation of a paraffin microactuator concept by coupling multiple ...

3-D Finite Element Modeling of a Nanostructure Enhanced SAW Sensor

Y.L. Rao[1], and G. Zhang[1-3]
[1] Micro/Nano Bioengineering Laboratory, Department of Biological and Agricultural Engineering, The University of Georgia
[2] Nanoscale Science and Engineering Center, The University of Georgia
[3] Faculty of Engineering, The University of Georgia

Integration of surface acoustic wave (SAW) devices with nanostructures has gained interest in the development of sensors with high sensitivity. To better design nanostructure integrated SAW devices, it is essential to model three dimensional (3-D) SAW devices and analyze the wave propagation characteristics in nanostructure-enhanced SAW devices. In this work, a 3-D finite element model of ...

Development of MEMS-based Pressure Sensor for Underwater Applications

Aarthi E[1], Pon Janani S[1], Vaidevi S[1], Meenakshi Sundaram N [1], Chandra Devi K[1]
[1]PSG College of Technology, Coimbatore, Tamil Nadu, India

Blind cave fish are capable of sensing flows and movements of nearby objects even in dark and murky water conditions with the help of arrays of pressure-gradient sensors present on their bodies called lateral-lines. To emulate this functionality of lateral-lines for autonomous underwater vehicles, an array of polymer MEMS pressure sensors have been developed that can transduce underwater pressure ...

Simulation of Clamped-Free and Clamped-Clamped Microbeams Dynamics for Nonlinear Mechanical Switch Applications

M. Uncuer, B. Marinkovic, and H. Koser
Department of Electrical Engineering, Yale University, New Haven, CT, USA

This work focuses on the nonlinear dynamics of clamped-free and clamped-clamped microbeams under electrostatic and shock loading for microswitch applications. This type of analysis essentially requires the consideration of the well-known "pull-in" phenomenon under dynamic conditions. In this work, we show that a micro switch that makes contact above a certain voltage but is otherwise immune to ...

Design and Simulation of MEMS Based Gyroscope for Vestibular Prosthesis

R. Nithya[1], K. Kavitha[1], R. K. Shahana[1], A. Gupta[1], M. Alagappan[1]
[1]Department of Biomedical Engineering, PSG College of Technology, Coimbatore, Tamilnadu, India

The primary function of the vestibular system is to provide the brain with information about the body\'s motion and orientation. The absence of this information causes blurred vision and spatial disorientation, vertigo, dizziness, imbalance, nausea, vomiting, and other symptoms often characterize dysfunction of the vestibular system. Our aim is to design vestibular prosthesis using COMSOL ...

Design and Simulation of an Orbiting Piezoelectric MEMS Gyroscope Based on Detection of Phase-Shift Signals - new

S. Gorelick[1], J. R. Dekker[1], B. Guo[1], H. Rimminen[1]
[1] VTT Technical Research Centre of Finland, Espoo, Finland

The feasibility of phase-sensitive detection of angular-rates using bi-directional orbiting piezoresonators suspended by thick annular springs with thin-film aluminium nitride piezoactuators on top of them was investigated. The ring-shaped flexures are more suitable for supporting the orbiting motion due to their angle-dependent spring constant. The response of the orbiting resonators to angular ...

Design, Simulation and Study of MEMS Based Micro-Needles and Micro-Pump for Biomedical Applications

P. K. Podder, D. Mallick, D. P. Samajdar, and A. Bhattacharyya
Institute of Radio Physics and Electronics
University of Calcutta
Kolkata
West Bengal, India

In this paper, we have addressed the issues related to the design and simulation of MEMS based silicon micro-needles for insertion of fluid into the dermis layer and into the subcutaneous fat layer. In addition, a poly-silicon micro-pump based on the principle of electrostatic actuation has been designed and simulated which can be integrated with the proposed micro-needles to control the fluid ...

Quick Search