See How Multiphysics Simulation Is Used in Research and Development
Engineers, researchers, and scientists across industries use multiphysics simulation to research and develop innovative product designs and processes. Find inspiration in technical papers and presentations they have presented at the COMSOL Conference. Browse the selection below or use the Quick Search tool to find a specific presentation or filter by application area.
View the COMSOL Conference 2024 Collection
This paper presents an optimized combination of artificial diffusion techniques to stabilize a drift dominated streamer discharge model which includes COMSOL Multiphysics’ Transport of Diluted Species modules for positive ion, negative ion, and electron charge densities, coupled through ... Read More
We use COMSOL Multiphysics to model a gas bubble expansion in a viscous liquid initially at rest, a very common system for lightweight foamed materials from metal production and polymer processing. Modelling and simulation of foam processing during the production step involves many ... Read More
Polymer electrolyte membrane (PEM) fuel cells have significant potential as a source of clean, efficient energy production. This study presents a three-dimensional, non-isothermal, fully-coupled model of a PEM fuel cell with printed circuit board current collectors. The effect of the ... Read More
This paper presents model development and simulation results for a microdroplet generator capable of internally measuring the volume of dispensed droplets. The system’s integrated sensing is enabled by storing compressible gas adjacent to the dispenser’s liquid reservoir. During ... Read More
Ruptured aortic aneurysm is one of the commonest cause of mortality in developed countries. To avoid it interventional repair is an effective treatment. In the recent years the development of new therapies, such as stent implantations, allows to perform this treatment more and more ... Read More
With the advancement of medical devices and implants, many now require more advanced nonlinear, hyper-elastic materials such as elastomers to be extensively utilized in the body. This combined with the need to allow for considerably different, varying and graduated material responses ... Read More
In this work, we show that dipolar magnetic coupling can be used to control the particle flow through microfluidic structures without changing the state of motion of the carrier liquid. Also no external magnetic gradient fields are employed; the total external magnetic force applied is ... Read More
This paper presents a numerical study of the deposition of spherical charged nanoparticles caused by convection and Brownian diffusion in a pipe with a cartilaginous ring structure. The model is supposed to describe deposition of charged particles in the upper generations of the ... Read More
Surface discharge initiation and propagation on the surface of an insulating solid immersed in a dielectric liquid were examined numerically and experimentally. To establish a generalized numerical technique for evaluating surface discharge phenomena using the electrohydrodynamics (EHD) ... Read More
A lot of techniques are developed to treat soils polluted by hydrocarbons pollutants: incineration, thermal treatment, extraction, chemical oxidation, bioremediation… Some of these techniques are very energy consuming (incineration, thermal treatment…) and often need a subsequent ... Read More