See How Multiphysics Simulation Is Used in Research and Development
Engineers, researchers, and scientists across industries use multiphysics simulation to research and develop innovative product designs and processes. Find inspiration in technical papers and presentations they have presented at the COMSOL Conference. Browse the selection below or use the Quick Search tool to find a specific presentation or filter by application area.
View the COMSOL Conference 2024 Collection
Micro Mirrors is a versatile device which has been gaining popularity and this finds application in fields such as optical switching, display and in medical fields for non-invasive imaging. A thermally actuated mirror moves in either positive or negative directions of x and y. The ends ... Read More
The main topic of this paper is the development of an innovative tool that can be applied in a wide range of complex problems, to simulate, optimize and improve system design especially when dealing with huge numbers of parameters and constraints. The new methodology is obtained by ... Read More
In this work COMSOL is utilized to obtain the Mason lumped parameter model for a piezoelectric transformer (PT) design. The Mason lumped parameters are relevant in the design process of power converters. The magnitude of the impedance is simulated for a specific interleaved multilayer ... Read More
Normal conducting cavities are typically used in the front end of proton accelerators to get the beam accelerated to velocities approximately a few tenths of the speed of light, where superconducting cavities can then be used to accelerate the beam to the speed of light. The warm part of ... Read More
β heat treatment of Uranium rods is carried out for randomization of oriented grains (called texture) developed during hot rolling or hot extrusion operation. During this process, Uranium rods undergo heating of up to 740 Deg C followed by water quenching. The objective of this work is ... Read More
The paper presents the numerical analysis of quench propagation in a DH magnet wound with a commercially available MgB2 wire in a fiber-glass composite matrix and operating at 20 K. The quench is induced by a small heater located on the first layer of the magnet close to the peak field ... Read More
The discharge properties in low pressure inductively coupled Ar/CH4 plasmas operating at an RF frequency of 13.56 MHz and total gas pressure of 20 mTorr are studied in this work. The calculation of gas flow is performed in coupling with the plasma simulation. The gas flow rate is varied ... Read More
Deep Ultraviolet Light Emitting Diodes (DUV LEDs) are presently operating at a relatively low efficiency, thus large amount of LED driving power is dissipating in heat. Thermal heating degrades LED performance and decreases LED’s lifetime. The degradation of DUV LED devices with ... Read More
Accelerometers are successfully commercialized MEMS devices. COMSOL Multiphysics® has been used in the modeling, simulation and optimizing of this design. The piezoresistive accelerometer is made up of a square proof mass with flexures supporting it. The piezoresistors are placed near ... Read More
Project X is a proposed proton accelerator complex at Fermilab. The CW LINAC is based on five types of resonators operating at three frequencies: half-wave, spoke, and elliptical. The low beam current for the CW operation of Project X requires cavities to operate at a high loaded Q and, ... Read More