See How Modeling and Simulation Is Used Across Industries
Multiphysics modeling and simulation drives innovation across industries and academia — as is evidenced by the many uses showcased in the technical papers and posters presented by engineers, researchers, and scientists at the COMSOL Conference each year.
Draw inspiration from the recent proceedings collected below, or, to find a specific presentation or filter by application area or conference year/location, use the Quick Search tool.
View the COMSOL Conference 2025 Collection
The rise in atmospheric CO2 needs the development of efficient conversion technologies. CO2 reduction reaction (CO2RR) emerges as a compelling solution, offering the transformation of CO2 into more energetic compounds, such as fuels (hydrocarbons, alcohols, etc.) and valuable chemicals, ... Read More
Liquid Metal Fast Breeder Reactor (LMFBR) employs molten sodium as coolant due to its suitable neutronic and thermal properties. Measurement of coolant flow rate is a very important factor both from operational and safety aspects of a fast reactor. Good electrical conductivity of liquid ... Read More
The self-ignition of tetrafluoroethylene (TFE) caused by contact with hot surfaces has been analyzed with the help of simulations performed with COMSOL Multiphysics®. The current study focuses on large-scale heated reactors for the industrial production of polytetrafluoroethylene (PTFE) ... Read More
Many industrial, especially heterogeneously catalysed, processes are characterised by a strong interaction between the reaction kinetics and transport phenomena. Because experiments in laboratory scale can be very time- and cost-intensive, Temkin andKul’kova developed a new reactor ... Read More
Nowadays mathematical models are applied in almost every field of our life to predict how real systems behave. Computational Fluid Dynamics (CFD) has become a standard tool for analyzing various situations where fluid flow has a significant effect on the studied processes. Complex models ... Read More
ICP reactors are usually meter sized and driven at RF frequencies, for example at 13.56 MHz. We developed a miniature resonator allowing an inductive type of coupling of microwaves at 2.45 GHz to a plasma jet, flowing in ceramic tubes. Previous experiments and simulations show an ... Read More
In recent years, the optimization of high-temperature superconductors (HTS) has shown promising potential for developing advanced cable layouts aimed at the realization of practical fusion reactors. Despite their excellent performance in terms of electromagnetic and mechanical stability, ... Read More
One challenge with converting nuclear research reactors to low enrichment fuels is the thermal-fluid performance. Local areas of high temperature, known as hotspots, limit reactor performance and thus require accurate modeling. A simplified fuel plate model is eveloped to compare ... Read More
1 Problem Description Most studies for investigating heat and mass transfer phenomena in sorption storage systems use 1D or 2D numerical models. These are inadequate for analyzing processes in more complex geometries used in current prototypes. We present here a 3D model for the ... Read More
Heterogeneous photocatalysis an advanced oxidation process (AOP) which in combination with a catalyst and UV irradiation completely mineralizes organic pollutants from water or gases into harmless compounds such as carbon dioxide (CO2) and water (H2O). Photocatalysis as a process is ... Read More
