See How Modeling and Simulation Is Used Across Industries
Multiphysics modeling and simulation drives innovation across industries and academia — as is evidenced by the many uses showcased in the technical papers and posters presented by engineers, researchers, and scientists at the COMSOL Conference each year.
Draw inspiration from the recent proceedings collected below, or, to find a specific presentation or filter by application area or conference year/location, use the Quick Search tool.
View the COMSOL Conference 2025 Collection
Eddy current thermography (ECT) is a non-destructive contact-free method of defect detection in a conductive material combining the electromagnetic induction of eddy currents and thermal imaging. This technique uses an excitation system consisting of an inductor with coil(s) carrying ... Read More
Magnetic Resonance Imaging (MRI) is a powerful tool for exploring brain function, offering detailed insights into its structure and physiology. Combining MRI technology with electrophysiological recording systems can enhance comprehension of brain functionality through synergistic ... Read More
In this work, a 2.8x0.22 μm^2 silicon strip waveguide (n = 3.43 @4.234 μm) on a silica substrate (n = 1.38 @4.234 μm) and a superstrate with n = 1 was designed and evaluated through 2D (i.e., mode analysis), and 3D (i.e., wave propagation) analysis to strengthen the interaction between ... Read More
Lithium niobate (LiNbO3) possesses unique combination of material properties such as: high electro-optic and elasto-optic coefficients and strong piezoelectricity, enabling integration of optical and acoustic functionalities within a single material, paving the way for advanced ... Read More
A magnetic field associated with current carrying coil(s) extends towards infinity, but an analytical model is of finite size. In the finite element analysis (FEA) of electromagnetic systems, open space needs to be modelled as close to reality as possible to get reliable results without ... Read More
The pursuit of artificial magnetism within metamaterials research has long been a focal point. Traditional methods rely on analyzing complex configurations such as arrays of subwavelength particles or split-rings, but unfortunately they fail at subwavelength scales. Revisiting Mie theory ... Read More
Simulating the shielding of a 3T-magnetic field with superconducting NbTi and BSCCO tubes deploying the A-H field formulation using COMSOL Multiphysics Screening of electromagnetic fields is a crucial technique for areas such as telecommunications, medical imaging, data storage and for ... Read More
This work presents the design and application of a quantum sensor using a point NV defect in a nanodiamond crystal lattice for in vitro applications. Our aim is to present the design of a quantum sensor using printed circuit boards (PCBs) and to investigate the quantum response ... Read More
In our laboratory LIN we develop unique scientific instruments, components and sample environment devices, mainly for the neutron spallation source SINQ in Switzerland. There are also in kind contributions to the European spallation source ESS in Lund, Sweden. I use COMSOL Multiphysics® ... Read More
The electromagnetic study for the design of microwave ovens requires knowledge of the electric permittivities of the materials within the chamber. In some cases, data can be easily obtained from the literature, as with Teflon, Mica, and borosilicate glass. However, for more advanced ... Read More
