See How Modeling and Simulation Is Used Across Industries
Multiphysics modeling and simulation drives innovation across industries and academia — as is evidenced by the many uses showcased in the technical papers and posters presented by engineers, researchers, and scientists at the COMSOL Conference each year.
Draw inspiration from the recent proceedings collected below, or, to find a specific presentation or filter by application area or conference year/location, use the Quick Search tool.
View the COMSOL Conference 2025 Collection
Convective instability in a thin liquid layer is observed in many technical systems [1] and is of interest to the self-organization theory. To date, however, only simple problems with the convection between flat plates are well studied [2]. In real systems and devices, convective flows ... Read More
This paper presents and discusses the first phase results of a wide ranging project concerning the study and prediction of the efficiency and energy performances of natural ventilation systems existing inside historic buildings. The air flow patterns, air temperature and air velocity ... Read More
Cellular-level oxygen consumption and cell viability models incorporating physiologically realistic assumptions and fully scaled 2D/3D geometries have been implemented in COMSOL Multiphysics for isolated pancreatic islets. Oxygen consumption was assumed to follow Michaelis-Menten–type ... Read More
In some power electronic applications the available coolant temperature is close to maximum and controlling operating temperature becomes more challenging, for which new thermal management schemes must be considered. COMSOL predicts the 3D fluid behavior and 3D temperature distribution ... Read More
Superparamagnetic micro beads offer some attractive applications in biological and biomedical fields. Some of the important applications include manipulation and separation of cells, isolation of specific cells, active drug delivery, magnetic cell separation, separation of proteins, and ... Read More
In this work we tackle a more theoretical aspect of micro-injection molding, to better understand physics during the process, through numerical simulations of cavity filling. We developed a two phase flow approach by the use of COMSOL Multiphysics®. In a first step, a Level Set model is ... Read More
In this study, COMSOL Multiphysics is applied in order to simulate reacting flows for duct burner systems arranged in the post-firing section of a Heat Recovery Steam Generator of a combined cycle power plant. Two- and three-dimensional simulations are carried out in order to ... Read More
The aim of this work is the Finite Element Analysis (FEA), by using COMSOL Multiphysics®, of the convective heat transfer and working temperature field of a photovoltaic module under different wind conditions. Read More
Relief patterning of the surface of microchannels has been actively pursued as a method of promoting mixing in systems with a low Reynold’s number (<<100). In this work, we explore, by using the COMSOL Multiphysics package and its Chemical Engineering Module, the possibility of ... Read More
The aim of this work is the numerical study, by finite element analysis using COMSOL Multiphysics®, of the heat transfer and working temperature field of a photovoltaic panel under realistic wind and irradiation conditions. It is well-known that a great portion of the solar radiation ... Read More
