See How Modeling and Simulation Is Used Across Industries
Multiphysics modeling and simulation drives innovation across industries and academia — as is evidenced by the many uses showcased in the technical papers and posters presented by engineers, researchers, and scientists at the COMSOL Conference each year.
Draw inspiration from the recent proceedings collected below, or, to find a specific presentation or filter by application area or conference year/location, use the Quick Search tool.
View the COMSOL Conference 2025 Collection
The simulation of a large acoustic cylindrical antenna made of numerous identical transducers is very often out of reach in terms of computational cost. Therefore the usual design procedure consist in optimizing the transducer standing alone, either in free field arrangement or sitting ... Read More
Ultrasound is a promising green technology for the advanced oxidation process (AOP) since it adds no chemicals to the treated water. In this paper, COMSOL Multiphysics® was used as a tool to design and characterize an ultrasound irradiator with multi-stepped configuration, which aims to ... Read More
In our work, simulations of a piezoelectrical micromachined ultrasonic transducer compatible with CMOS-MEMS process are presented. The piezoelectric material of the PMUT is AlN sandwiched between two Al layers and a top Si3N4 passive layer. The piezoelectric and the metal materials have ... Read More
In this paper we present a method to mitigate the effect of thermally-induced noise in Micro-Electro-Mechanical Systems (MEMS) through a force feedback circuit. Inherent noise-induced vibrations, which would be inconsiderable in macro scale, are considered as a limitation in micro- and ... Read More
Finite Element simulations are becoming an increasingly powerful tool in the transducer design process. The development of user-friendly software and predefined interfaces able to provide physics setup to predict the loudspeaker complex behavior helps designers in the product development ... Read More
The self heating process of Tetrafluoroethylene caused by an exothermic dimerization reaction was studied. The heat of reaction can lead to a thermal explosion by the decomposition of the Tetrafluoroethylene. Different reaction kinetics, including multistep kinetics, were used to ... Read More
Introduction Leaky Surface Acoustic Wave (LSAW) resonators in rotated Y-X cut Lithium Tantalate (LiTaO3) are widely used for resonator based ladder filters in telecommunication applications. These devices make use of quasi- shear waves confined to the surface of the piezoelectric layer ... Read More
Surface acoustic wave gas sensors use a chemically sensitive resistive layer to detect gas concentration. The resistivity of the sensing material, the sensing layer thickness, and the spacer layer thickness all affect the surface wave propagation velocity. Existing analytic theory ... Read More
This paper presents a methodology towards designing, analyzing and optimizing piezoelectric interdigitated microactuators using COMSOL Multiphysics. The models used in this study were based on a circularly interdigitated design that takes advantage of primarily the d{;sub}33 ... Read More
The purpose of this paper is to describe numerical electro-thermal simulations of the REMS wind sensor unit and the results obtained by using COMSOL Multiphysics. This device is a hot-film anemometer for 2D wind measurements, which does not have movable parts and is based on the air ... Read More
