See How Modeling and Simulation Is Used Across Industries
Multiphysics modeling and simulation drives innovation across industries and academia — as is evidenced by the many uses showcased in the technical papers and posters presented by engineers, researchers, and scientists at the COMSOL Conference each year.
Draw inspiration from the recent proceedings collected below, or, to find a specific presentation or filter by application area or conference year/location, use the Quick Search tool.
View the COMSOL Conference 2025 Collection
This research presents the design, simulation, and characterization of novel resonator structures based on the principles of coupling electric fields using periodic metamaterial-inspired configurations using COMSOL Multiphysics RF module. The resonators are meticulously crafted to ... Read More
The integration of machine learning (ML) techniques into geophysical exploration and underwater mapping has emerged as a transformative approach for interpreting complex sensor data. This paper presents a comprehensive framework for using COMSOL Multiphysics to develop and validate ... Read More
Lubricant oil is used to ensure proper functioning of industrial machinery such as turbines, gears, bearings and compressors. Oil analysis is used to detect and quantify the presence of wear metals and other contaminants in the lubricant of oil wetted systems, by sensing the change in ... Read More
Thermal flow meters represent a vast range of sensors for applications in oil and gas, sustainable energy, food and medical care markets, where precise control of the mass flow is required. As a part of the MEMS production process, testing is performed after product assembly. Due to high ... Read More
This communication reports on a numeric fluid dynamics simulation on a pipe flow model. The basic background is to determine the velocity of a flowing fluid in a pipe by using the Thermal Time-Of-Flight (TTOF) method on water. The visualization of the temperature and velocity ... Read More
An automated design tool using COMSOL Multiphysics 3.5a and a genetic algorithm was developed to improve the performance of a MEMS resonant mass sensor. The device was comprised of a fixed-free poly-silicon micro-cantilever beam with electrostatic actuation and capacitive sensing. The ... Read More
Interaction between the probe and a defect in eddy current non-destructive evaluation is studied. Evaluation of sensor signal response is the basis for the calculation. In this work a differential sensor is considered and the problem regarded here is problem 8 from the testing of ... Read More
Arterial disease, especially Coronary Artery Disease (CAD) is one of the leading causes of premature morbidity and mortality. During the flow, blood interacts with vessel wall mechanically and chemically which modulates the plaque formation in blood vessel leading to coronary artery ... Read More
This paper chalks out the design and performance of a piezo resistive surface micro machined circular diaphragm based pressure sensor. A structural deformation in the piezo resistive nano structure placed above the diaphragm will result in varied current density, which is in direct ... Read More
Spacecrafts have a prime necessity that their temperature be controlled. This paper presents the simulation of a mechanically actuated field effect transistor that is used in a thermal system. It comprises of a composite beam, a piezoelectric substrate and a field effect transistor. The ... Read More
